MACHINE LEARNING PREDICTION MODEL FOR EARLY PREGNANCY DIAGNOSIS

逻辑回归 置信区间 怀孕 医学 随机森林 曲线下面积 预测建模 机器学习 人工智能 回归 产科 肿瘤科 计算机科学 内科学 统计 数学 生物 遗传学
作者
Kurt T. Barnhart,Kassie Jean Bollig,Suneeta Senapati,Jared C. Robins,Péter Takács,Daniel J. Haisenleder,David W. Speicher,Nathanael Koelper
出处
期刊:Fertility and Sterility [Elsevier]
卷期号:120 (4): e234-e234
标识
DOI:10.1016/j.fertnstert.2023.08.663
摘要

Approximately 20-40% of women with early pregnancy will not have a definitive diagnosis at presentation and are at a higher risk of having a non-viable pregnancy and associated morbidity. After external validation of individual biomarkers, we leveraged multiple machine learning-based methodologies to evaluate combinations of biomarkers to develop a multiplexed prediction model for early pregnancy location and viability. Based on previous discovery, assay performance, and validation studies, we first assessed the predictive ability and discrimination capacity of 24 candidate biomarkers in a case control study of patients with definitive intrauterine pregnancy (IUP) n=75, pregnancy loss (SAB) n=75, or ectopic pregnancy (EP) n=68 by Area Under the Curve (AUC) with 95% Confidence Intervals and two-sample t-tests. We then utilized machine learning methods including classification and regression tree analysis (CART), random forest (RF), and logistic regression of neural networks to evaluate combinations of the 11 best markers. Analyses were performed to maximize sensitivity, sensitivity, and accuracy of predicting both pregnancy location (EP vs. IUP and SAB) and viability (IUP vs. EP and SAB). 11 biomarkers with an AUC of >0.7 and a p value of <0.001 were candidates for the development of the multiplexed prediction model. Using 10 markers, RF predicted viability in 65% of patients with 97% accuracy. When only 6 markers were used, RF predicted viability in 69-70% with 93-94% accuracy. For the prediction of location, using all 11 markers predicted the outcome in 65% of cases with 97% accuracy. RF using 6 markers predicted the outcome in 68-69% of cases with 93-94% accuracy. When models maximizing accuracy for location and viability were used serially, CART predicted the outcome in 73% of cases with 96% accuracy. We have demonstrated that a small pool of biomarkers used in combination can aid in the prediction of early pregnancy outcome. Models balancing parsimony, simplicity, and accuracy may best negate consequences from both false positive and negative predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助jiang1采纳,获得10
刚刚
研友_VZG7GZ应助nhjiebio采纳,获得10
2秒前
heher完成签到 ,获得积分10
3秒前
cq220发布了新的文献求助10
4秒前
5秒前
6秒前
王路飞完成签到,获得积分10
6秒前
6秒前
小蘑菇应助尛瞐慶成采纳,获得10
7秒前
9秒前
伶俐的道之完成签到,获得积分20
10秒前
脑洞疼应助王路飞采纳,获得10
11秒前
11秒前
hindbind发布了新的文献求助10
11秒前
上官若男应助流年采纳,获得10
12秒前
12秒前
14秒前
酷波er应助风趣的黑夜采纳,获得10
14秒前
子车茗应助江城子采纳,获得20
15秒前
MingqingFang发布了新的文献求助10
15秒前
16秒前
16秒前
llljk发布了新的文献求助10
17秒前
华仔应助zz采纳,获得30
18秒前
困困桃发布了新的文献求助10
18秒前
汉堡包应助马里奥采纳,获得10
18秒前
18秒前
18秒前
ccm发布了新的文献求助10
18秒前
领导范儿应助炭小黑采纳,获得10
18秒前
搜集达人应助nalan采纳,获得10
18秒前
lbyyy发布了新的文献求助10
19秒前
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
chinzz应助科研通管家采纳,获得10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455233
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021628
捐赠科研通 2739152
什么是DOI,文献DOI怎么找? 1502472
科研通“疑难数据库(出版商)”最低求助积分说明 694544
邀请新用户注册赠送积分活动 693320