MACHINE LEARNING PREDICTION MODEL FOR EARLY PREGNANCY DIAGNOSIS

逻辑回归 置信区间 怀孕 医学 随机森林 曲线下面积 预测建模 机器学习 人工智能 回归 产科 肿瘤科 计算机科学 内科学 统计 数学 生物 遗传学
作者
Kurt T. Barnhart,Kassie Jean Bollig,Suneeta Senapati,Jared C. Robins,Péter Takács,Daniel J. Haisenleder,David W. Speicher,Nathanael Koelper
出处
期刊:Fertility and Sterility [Elsevier BV]
卷期号:120 (4): e234-e234
标识
DOI:10.1016/j.fertnstert.2023.08.663
摘要

Approximately 20-40% of women with early pregnancy will not have a definitive diagnosis at presentation and are at a higher risk of having a non-viable pregnancy and associated morbidity. After external validation of individual biomarkers, we leveraged multiple machine learning-based methodologies to evaluate combinations of biomarkers to develop a multiplexed prediction model for early pregnancy location and viability. Based on previous discovery, assay performance, and validation studies, we first assessed the predictive ability and discrimination capacity of 24 candidate biomarkers in a case control study of patients with definitive intrauterine pregnancy (IUP) n=75, pregnancy loss (SAB) n=75, or ectopic pregnancy (EP) n=68 by Area Under the Curve (AUC) with 95% Confidence Intervals and two-sample t-tests. We then utilized machine learning methods including classification and regression tree analysis (CART), random forest (RF), and logistic regression of neural networks to evaluate combinations of the 11 best markers. Analyses were performed to maximize sensitivity, sensitivity, and accuracy of predicting both pregnancy location (EP vs. IUP and SAB) and viability (IUP vs. EP and SAB). 11 biomarkers with an AUC of >0.7 and a p value of <0.001 were candidates for the development of the multiplexed prediction model. Using 10 markers, RF predicted viability in 65% of patients with 97% accuracy. When only 6 markers were used, RF predicted viability in 69-70% with 93-94% accuracy. For the prediction of location, using all 11 markers predicted the outcome in 65% of cases with 97% accuracy. RF using 6 markers predicted the outcome in 68-69% of cases with 93-94% accuracy. When models maximizing accuracy for location and viability were used serially, CART predicted the outcome in 73% of cases with 96% accuracy. We have demonstrated that a small pool of biomarkers used in combination can aid in the prediction of early pregnancy outcome. Models balancing parsimony, simplicity, and accuracy may best negate consequences from both false positive and negative predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Shuaibin_Pei完成签到,获得积分10
1秒前
简单的沂完成签到 ,获得积分10
2秒前
李钧鹏发布了新的文献求助10
4秒前
Shuaibin_Pei发布了新的文献求助10
5秒前
UAU完成签到,获得积分20
5秒前
顾矜应助如意2023采纳,获得10
6秒前
sha303270完成签到,获得积分20
6秒前
TMUEH_FCL发布了新的文献求助30
7秒前
Ava应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
Qiao应助科研通管家采纳,获得10
8秒前
圣城余晖应助科研通管家采纳,获得10
8秒前
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
10秒前
sherlym完成签到,获得积分10
11秒前
上官若男应助等待的谷波采纳,获得10
11秒前
852应助TMUEH_FCL采纳,获得30
13秒前
Emper发布了新的文献求助10
14秒前
14秒前
Jasper应助傅予菲采纳,获得10
15秒前
不才完成签到,获得积分20
17秒前
白英完成签到,获得积分10
17秒前
茶茶同学完成签到,获得积分10
17秒前
Thien发布了新的文献求助10
18秒前
19秒前
22秒前
22秒前
23秒前
24秒前
科研小菜完成签到 ,获得积分10
24秒前
bias发布了新的文献求助10
24秒前
小鹿呀完成签到,获得积分10
26秒前
26秒前
nuonuo发布了新的文献求助10
27秒前
29秒前
Levi完成签到 ,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967279
求助须知:如何正确求助?哪些是违规求助? 3512575
关于积分的说明 11164253
捐赠科研通 3247522
什么是DOI,文献DOI怎么找? 1793850
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804495