控制理论(社会学)
终端滑动模式
滑模控制
正确性
控制器(灌溉)
趋同(经济学)
理论(学习稳定性)
模式(计算机接口)
人工神经网络
计算机科学
终端(电信)
跟踪(教育)
跟踪误差
稳健性(进化)
集合(抽象数据类型)
工程类
控制工程
控制(管理)
人工智能
非线性系统
算法
基因
经济
物理
程序设计语言
农学
机器学习
量子力学
生物化学
电信
心理学
操作系统
生物
化学
经济增长
教育学
作者
Tengshuo Dong,Runqi Chai,Fenxi Yao,Antonios Tsourdos,Senchun Chai,Marcos Garcia
标识
DOI:10.1016/j.ast.2023.108669
摘要
In this paper, we proposed a predefined-time terminal sliding mode approach for attitude tracking control of unmanned aerial vehicle (UAV). In order to obtain the high convergence speed and steady-state performance controller, the modified non-singular terminal sliding mode control (TSMC) we adopted can switch sliding mode surfaces under different conditions. The system stability is achieved within a predefined time, which can be set by modifying the explicit parameters in advance. Due to the existence of model uncertainties and unknown external disturbances, an adaptive neural network-based approach is applied to compensate the error between the actual and nominal model without requiring any prior knowledge of the disturbances. Several comparative studies are carried out between the proposed approach and other predefined-time techniques in previous work, and simulation results and experimental results are presented to validate the correctness of analysis and superiority of the proposed control scheme.
科研通智能强力驱动
Strongly Powered by AbleSci AI