Choice of the co-opetition model for a new energy vehicle supply chain under government subsidies

补贴 业务 政府(语言学) 供应链 产业组织 经济 营销 市场经济 语言学 哲学
作者
Yuyan Wang,Xiaozhen Zhang,T.C.E. Cheng,Tsung-Hsien Wu
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:179: 103326-103326 被引量:20
标识
DOI:10.1016/j.tre.2023.103326
摘要

We study the co-opetition model selection problem for a new energy vehicle (NEV) supply chain comprising a dominant manufacturer and a subordinate supplier. Given the impact of R&D subsidies on suppliers' technological innovation, we consider two co-opetition models, namely wholesale co-opetition and patent licensing co-opetition, derive the optimal decisions of the models, and analyze the optimal selections for supply chain members. We also conduct extensive numerical studies to verify the research findings and generate practical insights. We find that patent licensing co-opetition is not necessarily beneficial to supply chain members. However, under certain conditions, patent licensing co-opetition can create a "win-win" situation for the supply chain. Furthermore, as the degree of product substitution increases under patent licensing co-opetition, the optimal retail prices of the manufacturer and supplier both decrease first and then increase, but their thresholds are different. In addition, the R&D cost coefficient positively affects the fixed cost of patent usage, but it does not affect the unit patent licensing fee. This study provides theoretical guidance for supply chain members to choose the optimal co-opetition models and has important practical significance for promoting the sustainable development of the NEV industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天天快乐应助杨杨杨采纳,获得10
1秒前
在水一方应助莉莉采纳,获得10
1秒前
1秒前
CodeCraft应助飘逸飞柏采纳,获得10
2秒前
科研通AI5应助sc采纳,获得30
2秒前
今后应助蕾蕾采纳,获得10
3秒前
小猫钓鱼发布了新的文献求助10
3秒前
传奇3应助从容采纳,获得10
4秒前
4秒前
4秒前
4秒前
等等发布了新的文献求助10
6秒前
sheh发布了新的文献求助30
8秒前
无语的长颈鹿完成签到,获得积分10
8秒前
8秒前
fisher完成签到,获得积分10
8秒前
ll2925203发布了新的文献求助10
9秒前
柠檬01210发布了新的文献求助10
9秒前
科研通AI5应助llj采纳,获得10
9秒前
大大小小完成签到,获得积分20
9秒前
嘚嘚完成签到,获得积分10
10秒前
loop发布了新的文献求助10
10秒前
10秒前
Roach完成签到,获得积分10
12秒前
汉堡包应助1l2kl采纳,获得10
14秒前
14秒前
15秒前
15秒前
16秒前
sheh完成签到,获得积分20
16秒前
小龅牙吖发布了新的文献求助10
17秒前
17秒前
Passionfruit发布了新的文献求助10
18秒前
Long_Bai发布了新的文献求助10
18秒前
西奥发布了新的文献求助10
18秒前
许起眸发布了新的文献求助10
18秒前
19秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735423
求助须知:如何正确求助?哪些是违规求助? 3279372
关于积分的说明 10014345
捐赠科研通 2996002
什么是DOI,文献DOI怎么找? 1643782
邀请新用户注册赠送积分活动 781471
科研通“疑难数据库(出版商)”最低求助积分说明 749400