Building a digital twin for large-scale and dynamic C+L-band optical networks

计算机科学 节点(物理) 电子工程 可靠性(半导体) 电信网络 桥接(联网) 分布式计算 实时计算 计算机工程 计算机网络 工程类 功率(物理) 物理 结构工程 量子力学
作者
Yao Zhang,Min Zhang,Yuchen Song,Yan Shi,Chunyu Zhang,Cheng Ju,Bingli Guo,Shanguo Huang,Danshi Wang
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:15 (12): 985-985 被引量:2
标识
DOI:10.1364/jocn.503265
摘要

Bridging the gap between the real and virtual worlds, a digital twin (DT) leverages data, models, and algorithms for comprehensive connectivity. The research on DTs in optical networks has increased in recent years; however, optical networks are evolving toward wideband capabilities, highly dynamic states, and ever-increasing scales, posing huge challenges, including high complexity, extensive computational duration, and limited accuracy for DT modeling. In this study, the DT models are developed based on the Gaussian noise (GN) model and a deep neural network (DNN) to perform efficient and accurate quality of transmission estimations in large-scale C+L-band optical networks, facilitating effective management and control in the digital platform. The DNN-based model obtained the estimated generalized signal-to-noise absolute errors within 0.2 dB in large-scale network simulation, specifically a 77-node network topology. Additionally, compared to the GN-based model, the testing time by using the DNN-based model has been significantly reduced from tens of minutes to 110 ms. Moreover, based on the DT models, multiple potential application scenarios are studied to ensure high-reliability operation and high-efficiency management, including optimization and control of physical layer devices, real-time responses to deterioration alarms and link faults, and network rerouting and resource reallocation. The constructed DT framework integrates practical analysis and deduction functions, with fast operation and accurate calculation to gradually promote the efficient design of optical networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助lina采纳,获得10
刚刚
刚刚
刚刚
刚刚
果果完成签到,获得积分10
刚刚
欣欣发布了新的文献求助10
1秒前
RJ发布了新的文献求助10
1秒前
1秒前
华大01完成签到,获得积分10
1秒前
蓝色斑马发布了新的文献求助10
2秒前
麻果应助小慧儿采纳,获得10
2秒前
2秒前
CAOHOU应助邱老黑采纳,获得10
2秒前
斯文傲芙完成签到,获得积分10
3秒前
飞云发布了新的文献求助10
3秒前
abcdv完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
小咸鱼发布了新的文献求助10
4秒前
李小喵发布了新的文献求助10
4秒前
4秒前
FJ发布了新的文献求助10
5秒前
5秒前
6秒前
华大01发布了新的文献求助10
6秒前
史永桂发布了新的文献求助10
6秒前
斯文败类应助谭玲慧采纳,获得10
8秒前
魏1122完成签到,获得积分10
8秒前
xiaomi发布了新的文献求助10
9秒前
二宝发布了新的文献求助10
10秒前
马拉疯兔子完成签到 ,获得积分10
10秒前
10秒前
乔哥儿发布了新的文献求助10
11秒前
WUCHEN完成签到,获得积分10
11秒前
天天快乐应助康康星采纳,获得10
11秒前
11秒前
12秒前
12秒前
明理苑博发布了新的文献求助10
13秒前
完美世界应助超级的之柔采纳,获得10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961496
求助须知:如何正确求助?哪些是违规求助? 3507837
关于积分的说明 11138394
捐赠科研通 3240311
什么是DOI,文献DOI怎么找? 1790903
邀请新用户注册赠送积分活动 872636
科研通“疑难数据库(出版商)”最低求助积分说明 803288