Channel Pruning Method for Signal Modulation Recognition Deep Learning Models

计算机科学 深度学习 人工智能 修剪 机器学习 频道(广播) 模式识别(心理学) 算法 计算机网络 农学 生物
作者
Zhuangzhi Chen,Zhangwei Wang,Xuzhang Gao,Jinchao Zhou,Dongwei Xu,Shilian Zheng,Qi Xuan,Xiaoniu Yang
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 442-453 被引量:6
标识
DOI:10.1109/tccn.2023.3329000
摘要

Automatic modulation recognition (AMR) plays an important role in communication system. With the expansion of data volume and the development of computing power, deep learning framework shows great potential in AMR. However, deep learning models suffer from the heavy resource consumption problem caused by the huge amount of parameters and high computational complexity, which limit their performance in scenarios that require fast response. Therefore, the deep learning models must be compressed and accelerated, where channel pruning is an effective method to reduce the amount of computation and can speed up models inference. In this paper, we propose a new channel pruning method suitable for AMR deep learning models. We consider both the channel redundancy of the convolutional layer and the channel importance measured by the $\gamma $ scale factor of the batch normalization (BN) layer. Our proposed method jointly evaluates the model channels from the perspectives of structural similarity and numerical value, and generates evaluation indicators for selecting channels. This method can prevent cutting out important convolutional layer channels. And combined with other strategies such as one-shot pruning strategy and local pruning strategy, the model classification performance can be guaranteed further. We demonstrate the effectiveness of our approach on a variety of different AMR models. Compared with other classical pruning methods, the proposed method can not only better maintain the classification accuracy, but also achieve a higher compression ratio. Finally, we deploy the pruned network model to edge devices, validating the significant acceleration effect of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
笨笨娇完成签到 ,获得积分10
3秒前
科研通AI2S应助mazg采纳,获得10
3秒前
3秒前
5秒前
踏实的纸飞机完成签到 ,获得积分10
6秒前
www发布了新的文献求助10
7秒前
康乐顺岸完成签到,获得积分10
8秒前
plusweng完成签到 ,获得积分10
9秒前
9秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
10秒前
cyan完成签到 ,获得积分10
10秒前
叽叽卟卟发布了新的文献求助10
12秒前
耳机单蹦完成签到,获得积分10
13秒前
pluto应助Leslie采纳,获得10
13秒前
脑洞疼应助称心寒松采纳,获得30
13秒前
yc完成签到,获得积分10
13秒前
外向的鸭子完成签到,获得积分10
13秒前
不和可乐发布了新的文献求助10
15秒前
苹果蜗牛完成签到 ,获得积分10
15秒前
兔纸兔吱兔仔儿完成签到,获得积分10
16秒前
17秒前
科研通AI5应助Raiden采纳,获得20
17秒前
18秒前
18秒前
liuyifei发布了新的文献求助20
19秒前
王灿灿发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
稀松完成签到,获得积分0
23秒前
23秒前
www发布了新的文献求助10
24秒前
栗子发布了新的文献求助10
24秒前
24秒前
24秒前
leisure完成签到,获得积分20
24秒前
25秒前
glj关闭了glj文献求助
25秒前
文艺裘发布了新的文献求助10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427