生物
RNA沉默
病毒学
遗传学
基因沉默
烟草
突变体
毒力
核糖核酸
黄瓜花叶病毒
西葫芦黄花叶病毒
病毒
植物病毒
RNA干扰
基因
作者
Ya-Chi Kang,Shyi-Dong Yeh,Tsung-Chi Chen
出处
期刊:Phytopathology
[Scientific Societies]
日期:2023-11-01
标识
DOI:10.1094/phyto-07-23-0227-r
摘要
Plant viruses produce particular suppressors to antagonize the host defense response of RNA silencing to establish infection. Cucurbit chlorotic yellows virus (CCYV), a member of the genus Crinivirus of the family Closteroviridae, severely damages the production of economically essential cucurbits worldwide. Here, we used the attenuated zucchini yellow mosaic virus (ZYMV) vector ZAC to express individual coding sequences, including CP, CPm, P25, and P22, of a Taiwan CCYV isolate (CCYV-TW) to identify their possible roles as pathogenicity determinants. ZAC is an HC-Pro function mutant that lacks the ability of local lesion induction on Chenopodium quinoa leaves and induces mild mottling followed by recovery on its natural host zucchini squash plants. Only the recombinant expressing CCYV-TW P22 complemented the effect of ZAC HC-Pro dysfunction, causing more severe symptoms on zucchini squash plants and restoring lesion formation on C. quinoa leaves, with lesions forming faster than those generated by the wild-type ZYMV. This suggests that CCYV-TW P22 is a virulence enhancer. Sequence analysis of criniviral P22s revealed the presence of four conserved leucine residues (L10, L17, L84, and L127) and one conserved lysine residue (K185). The five P22 residues conserved among the CCYV isolates and the P22 orthologs of two other criniviruses were each substituted with alanine in CCYV-TW P22 to investigate its ability to suppress RNA silencing and pathogenicity. The results provide new insights into CCYV-P22, showing that the L127 residue of P22 is indispensable for maintaining its stability in RNA silencing suppression and essential for virulence enhancement.
科研通智能强力驱动
Strongly Powered by AbleSci AI