材料科学
硫化物
阴极
电解质
化学工程
氧化物
硫化
多硫化物
无机化学
硫黄
电极
冶金
物理化学
化学
工程类
作者
Yue Wang,Dengxu Wu,Penghao Chen,Pushun Lu,Xuefeng Wang,Liquan Chen,Hong Li,Fan Wu
标识
DOI:10.1002/adfm.202309822
摘要
Abstract With the growing demand for high‐energy‐density lithium‐ion batteries, Li‐rich Mn‐based layered oxide (LLO) cathodes with high specific capacity and low cost receive significant attention in conventional liquid lithium‐ion batteries. However, LLO is rarely used in sulfide all‐solid‐state lithium batteries (ASSLBs) because of severe interfacial side reactions with sulfide solid electrolytes (SEs), especially at a high operation voltage of 4.8 V (vs Li/Li + ). In this work, a dual‐function modification strategy is proposed to enable electrochemically stable LLO in sulfide ASSLBs. The covalent Ru─O bond formed by Ru‐doping can not only stabilize lattice oxygen, preventing further interfacial decomposition involving oxygen, but also enhance the ability of Li diffusion in Li 2 MnO 3 component, and then stimulate the activation of Li 2 MnO 3 phase. Meanwhile, the surface sulfidation strategy establishes a highly stable interface, contributing to the rapid ionic transport at LLO/LPSCl interface. Results show that the modified LLO in sulfide ASSLBs delivers two times higher initial discharge capacity and an extra‐long life of 2022 cycles of up to 4.2 V (vs Li–In) (with >70% capacity retention at 1 C). This research enriches the strategies for improving interfacial compatibility between LLO cathodes and sulfide SEs, thus providing new inspiration for guiding the application of LLO in sulfide ASSLBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI