Coarray Tensor-Based Angle Estimation for Bistatic MIMO Radar With a Dilated Moving Receive Array

双基地雷达 多输入多输出 计算机科学 雷达 算法 稀疏数组 雷达成像 控制理论(社会学) 波束赋形 电信 人工智能 控制(管理)
作者
Shuai Luo,Yuexian Wang,Jianying Li,Chintha Tellambura,Joel J. P. C. Rodrigues
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:59 (6): 8995-9009
标识
DOI:10.1109/taes.2023.3312359
摘要

Utilizing sparse arrays is a very effective and commonly used method to enhance the degrees of freedom (DOFs) of multiple-input multiple-output (MIMO) radar. Unfortunately, as research on sparse arrays has matured, it has become difficult to greatly improve the DOFs by relying on array structure design only. Moreover, the existing angle estimation methods for sparse MIMO radar would process data under a matrix-based framework rather than the entire coarray tensor, thus suffering some loss in angle estimation performance. In this article, we extend the DOFs of MIMO radar by exploiting sparse array motion and propose an angle estimation method exploiting coarray tensor. First, we not only use sparse arrays at the transmitter and receiver parts of MIMO radar but also dilate the interelement spacing of the receive array on a moving platform. We set the transmitted signal as periodic, and further expand the DOFs and virtual aperture of MIMO radar by using the aperture synthesis technique introduced by array motion. Second, we build a self-correlation tensor model and reshape it to produce an optimal tensor with the highest DOFs that can be obtained under the uniqueness condition of parallel factor decomposition. Third, we theoretically analyze the achievable DOFs of the proposed method and show that the maximum number of detectable targets of bistatic MIMO radar can be increased to about three times. Simulation results verify the correctness of the theoretical analysis and demonstrate the superior estimation performance of our proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
加壹完成签到 ,获得积分10
1秒前
2秒前
3秒前
trayheep发布了新的文献求助10
4秒前
汤远山发布了新的文献求助10
5秒前
Rando发布了新的文献求助10
5秒前
zz发布了新的文献求助10
5秒前
打打应助虚幻馒头采纳,获得10
5秒前
风笑完成签到,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
浮游应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
asdfzxcv应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
kang完成签到,获得积分10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得30
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得20
7秒前
研友_VZG7GZ应助酥山采纳,获得10
8秒前
xinxinxin91完成签到,获得积分10
9秒前
山水之乐发布了新的文献求助10
10秒前
段文天发布了新的文献求助10
10秒前
江睿曦完成签到,获得积分10
10秒前
xs完成签到,获得积分10
11秒前
12秒前
xiaopu完成签到,获得积分10
13秒前
江睿曦发布了新的文献求助10
13秒前
trayheep完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655717
求助须知:如何正确求助?哪些是违规求助? 4800177
关于积分的说明 15073698
捐赠科研通 4814168
什么是DOI,文献DOI怎么找? 2575555
邀请新用户注册赠送积分活动 1530927
关于科研通互助平台的介绍 1489596