Coarray Tensor-Based Angle Estimation for Bistatic MIMO Radar With a Dilated Moving Receive Array

双基地雷达 多输入多输出 计算机科学 雷达 算法 稀疏数组 雷达成像 控制理论(社会学) 波束赋形 电信 人工智能 控制(管理)
作者
Shuai Luo,Yuexian Wang,Jianying Li,Chintha Tellambura,Joel J. P. C. Rodrigues
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:59 (6): 8995-9009
标识
DOI:10.1109/taes.2023.3312359
摘要

Utilizing sparse arrays is a very effective and commonly used method to enhance the degrees of freedom (DOFs) of multiple-input multiple-output (MIMO) radar. Unfortunately, as research on sparse arrays has matured, it has become difficult to greatly improve the DOFs by relying on array structure design only. Moreover, the existing angle estimation methods for sparse MIMO radar would process data under a matrix-based framework rather than the entire coarray tensor, thus suffering some loss in angle estimation performance. In this article, we extend the DOFs of MIMO radar by exploiting sparse array motion and propose an angle estimation method exploiting coarray tensor. First, we not only use sparse arrays at the transmitter and receiver parts of MIMO radar but also dilate the interelement spacing of the receive array on a moving platform. We set the transmitted signal as periodic, and further expand the DOFs and virtual aperture of MIMO radar by using the aperture synthesis technique introduced by array motion. Second, we build a self-correlation tensor model and reshape it to produce an optimal tensor with the highest DOFs that can be obtained under the uniqueness condition of parallel factor decomposition. Third, we theoretically analyze the achievable DOFs of the proposed method and show that the maximum number of detectable targets of bistatic MIMO radar can be increased to about three times. Simulation results verify the correctness of the theoretical analysis and demonstrate the superior estimation performance of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助www采纳,获得10
1秒前
creepppp发布了新的文献求助10
1秒前
lita发布了新的文献求助10
1秒前
3秒前
华仔应助liang2508采纳,获得10
3秒前
在水一方应助liang2508采纳,获得10
3秒前
NexusExplorer应助liang2508采纳,获得10
3秒前
小马甲应助liang2508采纳,获得10
4秒前
丘比特应助liang2508采纳,获得10
4秒前
传奇3应助liang2508采纳,获得10
4秒前
田様应助liang2508采纳,获得10
4秒前
科目三应助liang2508采纳,获得10
4秒前
4秒前
Lucas应助liang2508采纳,获得10
4秒前
北鱼发布了新的文献求助10
4秒前
Jasper应助轻松的忆雪采纳,获得10
5秒前
专注的胡萝卜完成签到 ,获得积分10
6秒前
易相逢完成签到,获得积分10
6秒前
6秒前
陶陶应助开朗半仙采纳,获得10
7秒前
10秒前
华仔应助YuanF采纳,获得10
10秒前
科研通AI6应助creepppp采纳,获得10
11秒前
12秒前
12秒前
13秒前
Feijiahao完成签到,获得积分10
14秒前
清秀忆枫发布了新的文献求助10
14秒前
充电宝应助十月漠北采纳,获得10
17秒前
L14发布了新的文献求助10
17秒前
任润发布了新的文献求助10
17秒前
刘香发布了新的文献求助10
19秒前
搜集达人应助二十采纳,获得10
19秒前
19秒前
20秒前
潇洒乾完成签到 ,获得积分10
20秒前
22秒前
24秒前
24秒前
陶醉土豆完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924605
求助须知:如何正确求助?哪些是违规求助? 4194681
关于积分的说明 13029309
捐赠科研通 3966484
什么是DOI,文献DOI怎么找? 2173998
邀请新用户注册赠送积分活动 1191530
关于科研通互助平台的介绍 1101034