Auto-CA: Automated Cobb Angle Measurement Based on Vertebrae Detection for Assessment of Spinal Curvature Deformity

脊柱侧凸 柯布角 人工智能 脊柱弯曲 腰椎 模式识别(心理学) 卷积神经网络 曲率 科布 脊柱畸形 基本事实 计算机科学 椎骨 计算机视觉 腰椎 医学 放射科 数学 解剖 外科 生物 遗传学 几何学
作者
Wahyu Rahmaniar,Kenji Suzuki,Ting-Lan Lin
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:71 (2): 640-649 被引量:3
标识
DOI:10.1109/tbme.2023.3313126
摘要

An accurate identification and localization of vertebrae in X-ray images can assist doctors in measuring Cobb angles for treating patients with adolescent idiopathic scoliosis. It is useful for clinical decision support systems for diagnosis, surgery planning, and spinal health analysis. Currently, publicly available annotated datasets on spinal vertebrae are small, making deep-learning-based detection methods that are highly data-dependent less accurate. In this paper, we propose an algorithm based on convolutional neural networks that can be trained to detect vertebrae from a small set of images. This method can display critical information on a patient's spine, display vertebrae and their labels on the thoracic and lumbar, calculate the Cobb angle, and evaluate the severity of spinal deformities. The proposed achieved an average accuracy of 0.958 and 0.962 for classifying spinal deformities (i.e., C-shaped, S-shaped type 1, and S-shaped type 2) and severity of Cobb angle (i.e., normal, mild, moderate, and severe), respectively. The Cobb angle measurement had a median difference of less than 5° from the ground-truth with SMAPE of 5.27% and an error on landmark detection of 19.73. In addition, Lenke classification is used to analyze spinal deformities as types A, B, and C, which have an average accuracy of 0.924. Physicians can use the proposed system in clinical practice by providing X-ray images via the user interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mimi发布了新的文献求助10
1秒前
dlut0407完成签到,获得积分10
2秒前
唐瑾瑜完成签到,获得积分10
2秒前
jia发布了新的文献求助10
2秒前
上进生发布了新的文献求助10
3秒前
领导范儿应助鱼咬羊采纳,获得10
3秒前
佳佳发布了新的文献求助10
4秒前
4秒前
老肖完成签到,获得积分10
5秒前
威哥完成签到,获得积分10
5秒前
冷傲的小土豆完成签到,获得积分10
7秒前
无花果应助唯馨馨采纳,获得10
8秒前
8秒前
12秒前
星辰大海应助上进生采纳,获得10
13秒前
汉堡包应助YaHe采纳,获得10
13秒前
云海发布了新的文献求助10
14秒前
mesome完成签到,获得积分10
15秒前
17秒前
18秒前
王森发布了新的文献求助10
19秒前
20秒前
tigger完成签到,获得积分10
22秒前
整齐妙梦发布了新的文献求助10
23秒前
田様应助稳重向南采纳,获得10
25秒前
26秒前
26秒前
YaHe发布了新的文献求助10
26秒前
科研通AI2S应助张宝采纳,获得10
27秒前
28秒前
cauliflower发布了新的文献求助10
31秒前
32秒前
遥远的尧应助科研通管家采纳,获得10
32秒前
tianzml0应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
深情安青应助科研通管家采纳,获得10
32秒前
小蘑菇应助科研通管家采纳,获得10
33秒前
情怀应助科研通管家采纳,获得10
33秒前
乐乐应助科研通管家采纳,获得10
33秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164351
求助须知:如何正确求助?哪些是违规求助? 2815193
关于积分的说明 7908079
捐赠科研通 2474802
什么是DOI,文献DOI怎么找? 1317676
科研通“疑难数据库(出版商)”最低求助积分说明 631925
版权声明 602234