Detection of diabetic patients in people with normal fasting glucose using machine learning

医学 糖尿病 逻辑回归 随机森林 人工智能 试验装置 支持向量机 空腹血糖值 机器学习 内科学 胰岛素抵抗 内分泌学 计算机科学
作者
Kun Lv,Chunmei Cui,Rui Fan,Xiaojuan Zha,Pengyu Wang,Jun Zhang,Lina Zhang,Jing Ke,Dong Zhao,Qinghua Cui,Liming Yang
出处
期刊:BMC Medicine [BioMed Central]
卷期号:21 (1) 被引量:18
标识
DOI:10.1186/s12916-023-03045-9
摘要

Abstract Background Diabetes mellitus (DM) is a chronic metabolic disease that could produce severe complications threatening life. Its early detection is thus quite important for the timely prevention and treatment. Normally, fasting blood glucose (FBG) by physical examination is used for large-scale screening of DM; however, some people with normal fasting glucose (NFG) actually have suffered from diabetes but are missed by the examination. This study aimed to investigate whether common physical examination indexes for diabetes can be used to identify the diabetes individuals from the populations with NFG. Methods The physical examination data from over 60,000 individuals with NFG in three Chinese cohorts were used. The diabetes patients were defined by HbA1c ≥ 48 mmol/mol (6.5%). We constructed the models using multiple machine learning methods, including logistic regression, random forest, deep neural network, and support vector machine, and selected the optimal one on the validation set. A framework using permutation feature importance algorithm was devised to discover the personalized risk factors. Results The prediction model constructed by logistic regression achieved the best performance with an AUC, sensitivity, and specificity of 0.899, 85.0%, and 81.1% on the validation set and 0.872, 77.9%, and 81.0% on the test set, respectively. Following feature selection, the final classifier only requiring 13 features, named as DRING (diabetes risk of individuals with normal fasting glucose), exhibited reliable performance on two newly recruited independent datasets, with the AUC of 0.964 and 0.899, the balanced accuracy of 84.2% and 81.1%, the sensitivity of 100% and 76.2%, and the specificity of 68.3% and 86.0%, respectively. The feature importance ranking analysis revealed that BMI, age, sex, absolute lymphocyte count, and mean corpuscular volume are important factors for the risk stratification of diabetes. With a case, the framework for identifying personalized risk factors revealed FBG, age, and BMI as significant hazard factors that contribute to an increased incidence of diabetes. DRING webserver is available for ease of application ( http://www.cuilab.cn/dring ). Conclusions DRING was demonstrated to perform well on identifying the diabetes individuals among populations with NFG, which could aid in early diagnosis and interventions for those individuals who are most likely missed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
达到完成签到,获得积分20
刚刚
想把太阳揣兜里完成签到,获得积分10
刚刚
坚定的草丛完成签到,获得积分10
1秒前
red完成签到,获得积分10
1秒前
中平完成签到 ,获得积分10
1秒前
林祥胜完成签到 ,获得积分10
2秒前
心灵的守望完成签到,获得积分10
2秒前
Zsir完成签到,获得积分10
3秒前
SYLH应助wpeng326采纳,获得10
3秒前
zhangjianzeng发布了新的文献求助10
3秒前
hoshi完成签到 ,获得积分10
4秒前
从容的雨灵完成签到,获得积分10
5秒前
musejie完成签到,获得积分10
5秒前
ENG完成签到,获得积分10
5秒前
单身的青柏完成签到 ,获得积分10
5秒前
无私的芹应助诺奇采纳,获得10
5秒前
酷炫橘子完成签到,获得积分10
5秒前
情怀应助Tang采纳,获得10
6秒前
duan完成签到 ,获得积分10
6秒前
111完成签到,获得积分10
7秒前
上官若男应助JUNE采纳,获得30
7秒前
甜晞完成签到,获得积分10
7秒前
gnr2000发布了新的文献求助30
7秒前
小李完成签到,获得积分10
8秒前
sharks完成签到,获得积分10
8秒前
好想被风刮走完成签到,获得积分10
9秒前
11号迪西馅饼完成签到,获得积分10
9秒前
虚心三问发布了新的文献求助10
9秒前
wpeng326完成签到,获得积分20
10秒前
辛勤的寄瑶完成签到 ,获得积分10
10秒前
Swu完成签到,获得积分10
10秒前
10秒前
自由如天完成签到,获得积分10
11秒前
564654SDA完成签到,获得积分10
12秒前
12秒前
萤火完成签到,获得积分10
12秒前
小蘑菇应助zhangjianzeng采纳,获得10
12秒前
丫头完成签到 ,获得积分10
13秒前
明理的蜗牛完成签到,获得积分10
13秒前
晓豪完成签到,获得积分20
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027