亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of diabetic patients in people with normal fasting glucose using machine learning

医学 糖尿病 逻辑回归 随机森林 人工智能 试验装置 支持向量机 空腹血糖值 机器学习 内科学 胰岛素抵抗 内分泌学 计算机科学
作者
Kun Lv,Chunmei Cui,Rui Fan,Xiaojuan Zha,Pengyu Wang,Jun Zhang,Lina Zhang,Jing Ke,Dong Zhao,Qinghua Cui,Liming Yang
出处
期刊:BMC Medicine [Springer Nature]
卷期号:21 (1) 被引量:2
标识
DOI:10.1186/s12916-023-03045-9
摘要

Diabetes mellitus (DM) is a chronic metabolic disease that could produce severe complications threatening life. Its early detection is thus quite important for the timely prevention and treatment. Normally, fasting blood glucose (FBG) by physical examination is used for large-scale screening of DM; however, some people with normal fasting glucose (NFG) actually have suffered from diabetes but are missed by the examination. This study aimed to investigate whether common physical examination indexes for diabetes can be used to identify the diabetes individuals from the populations with NFG.The physical examination data from over 60,000 individuals with NFG in three Chinese cohorts were used. The diabetes patients were defined by HbA1c ≥ 48 mmol/mol (6.5%). We constructed the models using multiple machine learning methods, including logistic regression, random forest, deep neural network, and support vector machine, and selected the optimal one on the validation set. A framework using permutation feature importance algorithm was devised to discover the personalized risk factors.The prediction model constructed by logistic regression achieved the best performance with an AUC, sensitivity, and specificity of 0.899, 85.0%, and 81.1% on the validation set and 0.872, 77.9%, and 81.0% on the test set, respectively. Following feature selection, the final classifier only requiring 13 features, named as DRING (diabetes risk of individuals with normal fasting glucose), exhibited reliable performance on two newly recruited independent datasets, with the AUC of 0.964 and 0.899, the balanced accuracy of 84.2% and 81.1%, the sensitivity of 100% and 76.2%, and the specificity of 68.3% and 86.0%, respectively. The feature importance ranking analysis revealed that BMI, age, sex, absolute lymphocyte count, and mean corpuscular volume are important factors for the risk stratification of diabetes. With a case, the framework for identifying personalized risk factors revealed FBG, age, and BMI as significant hazard factors that contribute to an increased incidence of diabetes. DRING webserver is available for ease of application ( http://www.cuilab.cn/dring ).DRING was demonstrated to perform well on identifying the diabetes individuals among populations with NFG, which could aid in early diagnosis and interventions for those individuals who are most likely missed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hucheng发布了新的文献求助10
19秒前
19秒前
杳鸢应助个性的以菱采纳,获得50
34秒前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
华仔应助hucheng采纳,获得10
1分钟前
1分钟前
育种小杰发布了新的文献求助10
1分钟前
育种小杰完成签到,获得积分10
1分钟前
AireenBeryl531完成签到,获得积分0
2分钟前
爱静静完成签到,获得积分0
2分钟前
2分钟前
xiaoQ完成签到,获得积分10
2分钟前
shadow发布了新的文献求助10
2分钟前
xiaoQ发布了新的文献求助20
2分钟前
shadow完成签到,获得积分10
2分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
3分钟前
gszy1975完成签到,获得积分10
3分钟前
hucheng发布了新的文献求助10
3分钟前
天才小熊猫完成签到,获得积分10
4分钟前
英俊的铭应助国色不染尘采纳,获得30
4分钟前
4分钟前
hucheng完成签到,获得积分10
4分钟前
4分钟前
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
思源应助liuqizong123采纳,获得30
5分钟前
lixuebin完成签到 ,获得积分10
6分钟前
自由的梦露完成签到 ,获得积分10
7分钟前
FashionBoy应助AireenBeryl531采纳,获得10
7分钟前
8分钟前
8分钟前
9分钟前
10分钟前
李健应助心平气和采纳,获得10
10分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154982
求助须知:如何正确求助?哪些是违规求助? 2805698
关于积分的说明 7865814
捐赠科研通 2463938
什么是DOI,文献DOI怎么找? 1311678
科研通“疑难数据库(出版商)”最低求助积分说明 629688
版权声明 601853