A Parallel Deep Learning Based NLOS Identification Method Using CIR Signal

非视线传播 计算机科学 人工智能 深度学习 卷积神经网络 模式识别(心理学) 无线 电信
作者
Bowen Deng,Maode Yan,Tao Xu
标识
DOI:10.23919/ccc58697.2023.10240284
摘要

With the rapid development of indoor localization technology, Ultra-Wide Band (UWB) technology stands out for their good ability of noise-resistant, strong penetration and high localization accuracy. However, the increasingly complex indoor environment leads to the non-line-of-sight (NLOS) propagation of UWB localization signals, which seriously affects the accuracy of ranging-based localization algorithm. To mitigate the effects of NLOS, it is necessary to identify NLOS propagation first. In this paper, a novel NLOS identification method based on multi-inputs parallel deep learning model and Gramian Angular Field (GAF) is proposed. It is the first to utilize GAF to transform 1-dimision Channel Impulse Response (CIR) signal into 2-dimision colored images, which adds additional high-level abstract features to the CIR signals. In the model training phrase, the original CIR signals are used to extract temporal features by Convolutional Neural Network (CNN), and the GAF encoding images is used to extract visual features by Resnet. The performance of proposed method using open-source real-time measured dataset is compared with exiting popular NLOS identification methods. The experimental results show that our method can effectively improve the accuracy of traditional LOS/NLOS binary classification as well as multi-NLOS scenario classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助uniseen采纳,获得10
1秒前
达落完成签到,获得积分10
1秒前
1秒前
六六发布了新的文献求助10
2秒前
2秒前
糕手发布了新的文献求助10
2秒前
3秒前
冷酷凝梦发布了新的文献求助10
3秒前
3秒前
Owen应助斯人采纳,获得10
3秒前
3秒前
3秒前
JD完成签到,获得积分10
3秒前
自觉翠安完成签到,获得积分10
4秒前
朴素的小霸王完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
ding应助健康的绮晴采纳,获得10
5秒前
科研通AI6应助梦影采纳,获得10
5秒前
顾矜应助蜜桃奇迹采纳,获得10
5秒前
所所应助独特的采纳,获得10
5秒前
隐形曼青应助月眠眠采纳,获得10
5秒前
6秒前
6秒前
6秒前
荷小哈发布了新的文献求助10
7秒前
Maestro_S发布了新的文献求助10
7秒前
7秒前
2熊孩子2发布了新的文献求助10
7秒前
万能图书馆应助汤飞柏采纳,获得10
7秒前
7秒前
香蕉觅云应助xkkk采纳,获得30
8秒前
Li发布了新的文献求助10
8秒前
欣喜靖发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
陈凌飞完成签到,获得积分10
9秒前
落后的柜子完成签到,获得积分10
9秒前
Stone发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978