An Extremely Lightweight Change Detection Algorithm Based on Light Global-Local Feature Enhancement Module

计算机科学 特征提取 卷积神经网络 推论 变更检测 人工智能 特征(语言学) 编码(集合论) 算法 计算复杂性理论 模式识别(心理学) 语言学 哲学 集合(抽象数据类型) 程序设计语言
作者
Dongyang Liu,Baorong Xie,Junping Zhang,Rongli Ding
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:5
标识
DOI:10.1109/lgrs.2023.3315871
摘要

Remote sensing image change detection refers to finding the changed regions from a pair of registered images. It has important applications in many fields. However, most methods based on convolutional neural networks and transformer have high complexity and cannot be effectively deployed on satellites or drones in practical applications. To address this issue, we propose an extremely lightweight change detection algorithm called ELW_CDNet. Its inference speed is very fast. This method is based on the extremely lightweight shufflenetv2. Moreover, considering that both global as well as local features play an important role in change detection, we design a light global-local feature enhancement module (LGLFEM) for reinforcing the features extracted by the backbone. Specifically, the global feature extraction module in LGLFEM is implemented using separable self-attention, which has linear complexity and very low computational effort. We conduct experiments on two change detection datasets. Compared with some state-of-the-art methods, the proposed method can achieve superior performance with extremely fast inference speed. On the LEVIR-CD dataset, it achieves an F1 score of 90.47%, an IoU of 82.60% and an FPS of 914 with 1.75M parameters and 1.91GFLOPs. The code will be released soon on the site of https://github.com/dyl96/ELW_CDNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PQ完成签到,获得积分10
刚刚
chi完成签到 ,获得积分10
3秒前
默问完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
暖羊羊Y完成签到 ,获得积分10
4秒前
Yewen完成签到,获得积分10
4秒前
send完成签到,获得积分10
7秒前
王高兴完成签到,获得积分10
7秒前
个性的平蓝完成签到 ,获得积分10
8秒前
十六日呀完成签到,获得积分10
9秒前
lhl完成签到,获得积分0
9秒前
Dorren完成签到,获得积分10
10秒前
orixero应助Jerome采纳,获得10
10秒前
Lincoln完成签到,获得积分10
11秒前
梁平完成签到 ,获得积分10
11秒前
Owen应助wjw采纳,获得10
12秒前
qqqdewq完成签到,获得积分10
12秒前
Pises完成签到,获得积分10
12秒前
小太阳完成签到,获得积分10
13秒前
袁俪毓完成签到,获得积分10
14秒前
xiaofenzi完成签到,获得积分10
15秒前
噜噜噜完成签到 ,获得积分10
16秒前
ckmen5完成签到 ,获得积分10
17秒前
富贵儿完成签到 ,获得积分10
17秒前
18秒前
清风完成签到,获得积分10
18秒前
19秒前
和谐的映梦完成签到,获得积分10
19秒前
Astoria完成签到,获得积分10
19秒前
活力鸡完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
Jerome发布了新的文献求助10
22秒前
布曲完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
coollzl完成签到 ,获得积分10
25秒前
小王完成签到 ,获得积分10
26秒前
27秒前
一水独流完成签到,获得积分10
27秒前
百里幻翠完成签到,获得积分10
28秒前
搜集达人应助Jerome采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071