An Extremely Lightweight Change Detection Algorithm Based on Light Global-Local Feature Enhancement Module

计算机科学 特征提取 卷积神经网络 推论 变更检测 人工智能 特征(语言学) 编码(集合论) 算法 计算复杂性理论 模式识别(心理学) 语言学 哲学 集合(抽象数据类型) 程序设计语言
作者
Dongyang Liu,Baorong Xie,Junping Zhang,Rongli Ding
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:5
标识
DOI:10.1109/lgrs.2023.3315871
摘要

Remote sensing image change detection refers to finding the changed regions from a pair of registered images. It has important applications in many fields. However, most methods based on convolutional neural networks and transformer have high complexity and cannot be effectively deployed on satellites or drones in practical applications. To address this issue, we propose an extremely lightweight change detection algorithm called ELW_CDNet. Its inference speed is very fast. This method is based on the extremely lightweight shufflenetv2. Moreover, considering that both global as well as local features play an important role in change detection, we design a light global-local feature enhancement module (LGLFEM) for reinforcing the features extracted by the backbone. Specifically, the global feature extraction module in LGLFEM is implemented using separable self-attention, which has linear complexity and very low computational effort. We conduct experiments on two change detection datasets. Compared with some state-of-the-art methods, the proposed method can achieve superior performance with extremely fast inference speed. On the LEVIR-CD dataset, it achieves an F1 score of 90.47%, an IoU of 82.60% and an FPS of 914 with 1.75M parameters and 1.91GFLOPs. The code will be released soon on the site of https://github.com/dyl96/ELW_CDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人听双完成签到,获得积分10
1秒前
黄金蛋饺发布了新的文献求助10
1秒前
Hazel完成签到,获得积分10
1秒前
青青儿发布了新的文献求助10
2秒前
Jungel完成签到,获得积分0
2秒前
3秒前
噜啦噜啦发布了新的文献求助10
3秒前
许鸽应助排列组合式文章采纳,获得40
3秒前
4秒前
搜集达人应助杭谷波采纳,获得10
4秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
小丸子完成签到,获得积分20
7秒前
wanci应助pyQaQ采纳,获得10
7秒前
拼搏诗筠发布了新的文献求助10
7秒前
酷波er应助ZT采纳,获得10
8秒前
8秒前
10秒前
852应助科研通管家采纳,获得10
10秒前
10秒前
大个应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得50
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
reds应助科研通管家采纳,获得30
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
在水一方应助小丸子采纳,获得10
13秒前
田様应助噜啦噜啦采纳,获得10
13秒前
不舍天真发布了新的文献求助10
14秒前
斯文败类应助genomed采纳,获得10
15秒前
青青儿完成签到,获得积分10
15秒前
18秒前
18秒前
领导范儿应助YC采纳,获得10
19秒前
青柠檬发布了新的文献求助10
19秒前
海正完成签到,获得积分10
22秒前
pyQaQ发布了新的文献求助10
22秒前
无眠月完成签到,获得积分10
22秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959371
求助须知:如何正确求助?哪些是违规求助? 3505602
关于积分的说明 11124845
捐赠科研通 3237384
什么是DOI,文献DOI怎么找? 1789116
邀请新用户注册赠送积分活动 871577
科研通“疑难数据库(出版商)”最低求助积分说明 802844