An Extremely Lightweight Change Detection Algorithm Based on Light Global-Local Feature Enhancement Module

计算机科学 特征提取 卷积神经网络 推论 变更检测 人工智能 特征(语言学) 编码(集合论) 算法 计算复杂性理论 模式识别(心理学) 语言学 哲学 集合(抽象数据类型) 程序设计语言
作者
Dongyang Liu,Baorong Xie,Junping Zhang,Rongli Ding
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:5
标识
DOI:10.1109/lgrs.2023.3315871
摘要

Remote sensing image change detection refers to finding the changed regions from a pair of registered images. It has important applications in many fields. However, most methods based on convolutional neural networks and transformer have high complexity and cannot be effectively deployed on satellites or drones in practical applications. To address this issue, we propose an extremely lightweight change detection algorithm called ELW_CDNet. Its inference speed is very fast. This method is based on the extremely lightweight shufflenetv2. Moreover, considering that both global as well as local features play an important role in change detection, we design a light global-local feature enhancement module (LGLFEM) for reinforcing the features extracted by the backbone. Specifically, the global feature extraction module in LGLFEM is implemented using separable self-attention, which has linear complexity and very low computational effort. We conduct experiments on two change detection datasets. Compared with some state-of-the-art methods, the proposed method can achieve superior performance with extremely fast inference speed. On the LEVIR-CD dataset, it achieves an F1 score of 90.47%, an IoU of 82.60% and an FPS of 914 with 1.75M parameters and 1.91GFLOPs. The code will be released soon on the site of https://github.com/dyl96/ELW_CDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助小辉辉采纳,获得10
1秒前
2秒前
汀上白沙完成签到,获得积分10
2秒前
Akim应助细心的凌香采纳,获得10
3秒前
无限的高烽完成签到,获得积分10
3秒前
养恩完成签到,获得积分10
3秒前
虚拟小号发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
7秒前
车道出完成签到,获得积分10
7秒前
小宋爱科研完成签到,获得积分10
7秒前
啦啦啦发布了新的文献求助10
8秒前
Suzy完成签到,获得积分10
8秒前
传奇3应助1234采纳,获得10
8秒前
8秒前
8秒前
xainzi完成签到 ,获得积分10
8秒前
莉亚发布了新的文献求助10
9秒前
9秒前
9秒前
虚拟小号完成签到,获得积分10
10秒前
dashuaib发布了新的文献求助10
10秒前
11秒前
我艾吃饭发布了新的文献求助10
12秒前
12秒前
大吴克发布了新的文献求助10
12秒前
12秒前
WXK@945发布了新的文献求助30
13秒前
氙气飘飘发布了新的文献求助10
14秒前
15秒前
公主不爱说话完成签到,获得积分10
16秒前
73发布了新的文献求助10
16秒前
16秒前
科研通AI2S应助我艾吃饭采纳,获得10
17秒前
18秒前
18秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297232
求助须知:如何正确求助?哪些是违规求助? 2932727
关于积分的说明 8458768
捐赠科研通 2605447
什么是DOI,文献DOI怎么找? 1422342
科研通“疑难数据库(出版商)”最低求助积分说明 661364
邀请新用户注册赠送积分活动 644655