GNSS/MEMS IMU vehicle integrated navigation algorithm constrained by displacement vectors in urban environment

全球导航卫星系统应用 惯性测量装置 计算机科学 卡尔曼滤波器 惯性导航系统 噪音(视频) 流离失所(心理学) 导航系统 运动学 加速度计 算法 模拟 人工智能 全球定位系统 惯性参考系 电信 经典力学 量子力学 操作系统 图像(数学) 物理 心理学 心理治疗师
作者
Yihang Feng,Guanwen Huang,Ce Jing,Xin Li,Zhenhong Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (12): 125157-125157 被引量:3
标识
DOI:10.1088/1361-6501/acf9c2
摘要

Abstract The global navigation satellite system (GNSS) and a micro-electro-mechanical system inertial measurement unit (MEMS IMU) can be integrated to form a robust navigation system, providing continuous and accurate location information on dynamic vehicles. However, the performance of a GNSS/MEMS IMU integrated navigation system is easily affected by the accuracy of measurement noise matrix, which is significantly reduced in the urban environment. The adaptive Kalman filter can improve the measurement noise matrix reliability by constructing robust equivalent weight factors; however, GNSS observations are easily misjudged as exception sources that can deteriorate the filter stability. To address these problems, a novel integrated algorithm with a displacement vector constraint is proposed based on the kinematic characteristics of vehicles, which are considered as judgment factors. In this case, the measurement noise can be adjusted accordingly only when the GNSS observations are judged as abnormal. In this study, two types of vehicle navigation experiments were conducted: a low-speed wheeled robot in a campus environment and a dynamic vehicle in an actual urban environment. The experimental results showed that the three-dimensional navigation accuracy was improved by 47% and 55% compared with the conventional algorithm under the two different environments, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
云_123发布了新的文献求助10
1秒前
所所应助德德采纳,获得10
1秒前
衔尾蛇完成签到,获得积分10
1秒前
烟花应助幸福胡萝卜采纳,获得10
2秒前
shi hui应助乐观发卡采纳,获得10
2秒前
特兰克斯完成签到,获得积分20
2秒前
米斯特刘完成签到,获得积分20
3秒前
沫沫发布了新的文献求助10
3秒前
R先生发布了新的文献求助50
3秒前
通通通关注了科研通微信公众号
3秒前
snowdrift发布了新的文献求助10
3秒前
英姑应助北挽采纳,获得200
3秒前
kevindeng发布了新的文献求助20
4秒前
yx发布了新的文献求助10
4秒前
5秒前
6680668发布了新的文献求助10
5秒前
baobaonaixi完成签到,获得积分10
5秒前
5秒前
5秒前
三石完成签到 ,获得积分10
5秒前
6秒前
7秒前
7秒前
DAYTOY完成签到,获得积分10
7秒前
8秒前
8秒前
Flllllll完成签到,获得积分10
8秒前
喜悦成威完成签到,获得积分10
8秒前
酷波er应助南佳采纳,获得10
9秒前
9秒前
9秒前
Ava应助yan儿采纳,获得10
9秒前
丘比特应助纯真的莫茗采纳,获得10
9秒前
无花果应助勤恳的素阴采纳,获得10
9秒前
调皮的妙竹完成签到,获得积分10
10秒前
沫沫完成签到,获得积分10
10秒前
wzp发布了新的文献求助10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762