甜菜碱
免疫印迹
势垒函数
化学
溃疡性结肠炎
结肠炎
促炎细胞因子
分子生物学
生物化学
炎症
细胞生物学
生物
免疫学
医学
内科学
基因
疾病
作者
Weidong Dou,Hao Xu,Shuo Feng,Tao Liu,Lin Xiao,Yingchao Wu,Shanwen Chen,Yisheng Pan,Xin Wang
标识
DOI:10.1002/mnfr.202300376
摘要
Ulcerative colitis (UC) is an intestinal disease that is becoming increasingly prevalent and is often overlooked in early stages, and its pathogenesis is often closely related to inflammatory processes. Betaine is a natural product with anti-inflammatory effects that exists in a wide range of plants and animals.In this study, the protective effects of betaine are investigated on intestinal barrier function in a mouse model, a dextran sulfate sodium-induced ulcerative colitis and its mechanism of action in the inflammatory context. FITC-dextran 4000 Da (FD-4) flux, disease activity index, histopathological scores, and inflammatory factor levels in sera are determined across different groups. In addition, Caco-2 cell monolayer barrier function is evaluated by transepithelial resistance and FD-4 flux. The expression levels and distribution of tight junction proteins are determined using Western blot and immunofluorescence, respectively. Activation of the NF-κBp65/MLCK/p-MLC signaling pathway is detected by Western blot. Chromatin immunoprecipitation is performed to examine the binding of NF-κB to the MLCK gene promoter. The results indicated that betaine inhibits NF-κB-mediated activation of the MLCK/p-MLC signaling pathway to protect the intestinal barrier function of mice with UC.Betaine can be used as a potential candidate drug to improve intestinal barrier dysfunction in patients with UC.
科研通智能强力驱动
Strongly Powered by AbleSci AI