Development of a Novel Plantar Pressure Insole and Inertial Sensor System for Daily Activity Classification and Fall Detection

计算机科学 支持向量机 卷积神经网络 可穿戴计算机 人工智能 惯性测量装置 压力传感器 深度学习 活动识别 足部压力 惯性参考系 模式识别(心理学) 机器学习 嵌入式系统 工程类 机械工程 物理 量子力学
作者
Bingfei Fan,Fugang Yi,Simon X. Yang,Mingyu Du,Shibo Cai
出处
期刊:Lecture Notes in Computer Science 卷期号:: 265-278
标识
DOI:10.1007/978-981-99-6486-4_23
摘要

Quantifying human daily activities can provide relevant monitoring information about physical activities and fall risk, and wearable sensors are promising devices for activity monitoring in daily life scenarios. This paper designed a novel plantar pressure insole and inertial sensor system and presented classification algorithms for activity classification and fall detection. We designed each plantar pressure insole with eight thin uniaxial load cells placed in the key area of a foot. Twenty healthy young adults performed selected activities in the laboratory while wearing the plantar pressure shoes and six inertial measurement units (IMUs) on their feet, shanks, and thighs of both sides. We adopted the convolutional neural network (CNN), ensemble learning, and support vector machine (SVM) methods for activity classification, and the input data were inertial data, pressure data, and both data. We adopted CNN, RNN (recurrent neural network), LSTM (long short-term memory), and CNN-LSTM method for fall detection, and compared results before and after the Dempster-Shafer evidence theory. Results show that for activity classification, CNN with both inertial and plantar pressure data got the best accuracy of 97.1%. For fall detection, the accuracy of RNN, CNN, LSTM, and CNN-LSTM were 93.77%, 95.85%, 96.16%, and 97.76%, respectively. LSTM got comparable accuracy as CNN-LSTM but with much less latency. The presented wearable system and algorithms show good feasibility in activity classification and fall detection, which could serve as a foundation for physical activity monitoring and fall alert systems for elderly people.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雾蓝发布了新的文献求助10
刚刚
桃子发布了新的文献求助10
刚刚
烟花应助刘星星采纳,获得10
1秒前
一只鱼完成签到,获得积分10
1秒前
YY发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
qianmo完成签到 ,获得积分10
1秒前
jennifercui发布了新的文献求助10
2秒前
rh1006完成签到,获得积分10
2秒前
mrjohn发布了新的文献求助10
2秒前
2秒前
YE完成签到 ,获得积分20
4秒前
李繁蕊发布了新的文献求助10
4秒前
4秒前
4秒前
可可完成签到,获得积分10
4秒前
5秒前
自由寻菱发布了新的文献求助20
6秒前
俏皮元珊发布了新的文献求助10
6秒前
Owen应助YY采纳,获得10
6秒前
优秀的逊发布了新的文献求助10
6秒前
wzm完成签到,获得积分10
7秒前
一年发3篇JACS完成签到,获得积分10
7秒前
7秒前
SciGPT应助木子采纳,获得10
8秒前
66完成签到,获得积分10
8秒前
赵鹏翔发布了新的文献求助10
8秒前
带象完成签到,获得积分10
8秒前
才露尖尖角完成签到,获得积分10
9秒前
幽默服饰完成签到 ,获得积分10
9秒前
芝士就是力量完成签到,获得积分10
9秒前
xr完成签到 ,获得积分10
9秒前
YaoX发布了新的文献求助10
10秒前
打打应助核桃采纳,获得10
10秒前
Porifera完成签到,获得积分10
10秒前
10秒前
笋蒸鱼发布了新的文献求助10
10秒前
余云开发布了新的文献求助50
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740