Development of a Novel Plantar Pressure Insole and Inertial Sensor System for Daily Activity Classification and Fall Detection

计算机科学 支持向量机 卷积神经网络 可穿戴计算机 人工智能 惯性测量装置 压力传感器 深度学习 活动识别 足部压力 惯性参考系 模式识别(心理学) 机器学习 嵌入式系统 工程类 机械工程 物理 量子力学
作者
Bingfei Fan,Fugang Yi,Simon X. Yang,Mingyu Du,Shibo Cai
出处
期刊:Lecture Notes in Computer Science 卷期号:: 265-278
标识
DOI:10.1007/978-981-99-6486-4_23
摘要

Quantifying human daily activities can provide relevant monitoring information about physical activities and fall risk, and wearable sensors are promising devices for activity monitoring in daily life scenarios. This paper designed a novel plantar pressure insole and inertial sensor system and presented classification algorithms for activity classification and fall detection. We designed each plantar pressure insole with eight thin uniaxial load cells placed in the key area of a foot. Twenty healthy young adults performed selected activities in the laboratory while wearing the plantar pressure shoes and six inertial measurement units (IMUs) on their feet, shanks, and thighs of both sides. We adopted the convolutional neural network (CNN), ensemble learning, and support vector machine (SVM) methods for activity classification, and the input data were inertial data, pressure data, and both data. We adopted CNN, RNN (recurrent neural network), LSTM (long short-term memory), and CNN-LSTM method for fall detection, and compared results before and after the Dempster-Shafer evidence theory. Results show that for activity classification, CNN with both inertial and plantar pressure data got the best accuracy of 97.1%. For fall detection, the accuracy of RNN, CNN, LSTM, and CNN-LSTM were 93.77%, 95.85%, 96.16%, and 97.76%, respectively. LSTM got comparable accuracy as CNN-LSTM but with much less latency. The presented wearable system and algorithms show good feasibility in activity classification and fall detection, which could serve as a foundation for physical activity monitoring and fall alert systems for elderly people.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天真的羊青完成签到 ,获得积分10
刚刚
lixy完成签到,获得积分10
刚刚
TTT完成签到,获得积分10
刚刚
huco完成签到,获得积分10
刚刚
JIE发布了新的文献求助10
1秒前
溪水完成签到,获得积分10
1秒前
joy发布了新的文献求助10
2秒前
Qi完成签到 ,获得积分10
2秒前
ergatoid完成签到,获得积分10
2秒前
守望阳光1完成签到,获得积分10
3秒前
GL完成签到,获得积分10
3秒前
猫南北完成签到,获得积分10
4秒前
小星星完成签到 ,获得积分10
4秒前
l123完成签到 ,获得积分10
4秒前
温眼张完成签到,获得积分10
5秒前
xiumei1998完成签到,获得积分10
5秒前
orixero应助zzzkyt采纳,获得10
6秒前
踏实万天完成签到,获得积分10
6秒前
7秒前
7秒前
AGuang发布了新的文献求助10
7秒前
天玄一刀完成签到,获得积分10
8秒前
晨晓应助好困采纳,获得50
8秒前
鲨鱼也蛀牙完成签到,获得积分10
8秒前
WeiBao发布了新的文献求助10
9秒前
水清木华完成签到,获得积分10
9秒前
曹国庆完成签到 ,获得积分10
10秒前
10秒前
莫愁发布了新的文献求助10
10秒前
11秒前
chen完成签到,获得积分10
11秒前
11秒前
kjbt完成签到,获得积分20
11秒前
冯家源完成签到,获得积分10
11秒前
12秒前
仿真小学生完成签到,获得积分10
12秒前
ll应助fuguier采纳,获得10
12秒前
旺仔完成签到,获得积分10
13秒前
英俊延恶完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968603
求助须知:如何正确求助?哪些是违规求助? 3513420
关于积分的说明 11168029
捐赠科研通 3248900
什么是DOI,文献DOI怎么找? 1794540
邀请新用户注册赠送积分活动 875187
科研通“疑难数据库(出版商)”最低求助积分说明 804676