Development of a Novel Plantar Pressure Insole and Inertial Sensor System for Daily Activity Classification and Fall Detection

计算机科学 支持向量机 卷积神经网络 可穿戴计算机 人工智能 惯性测量装置 压力传感器 深度学习 活动识别 足部压力 惯性参考系 模式识别(心理学) 机器学习 嵌入式系统 工程类 机械工程 物理 量子力学
作者
Bingfei Fan,Fugang Yi,Simon X. Yang,Mingyu Du,Shibo Cai
出处
期刊:Lecture Notes in Computer Science 卷期号:: 265-278
标识
DOI:10.1007/978-981-99-6486-4_23
摘要

Quantifying human daily activities can provide relevant monitoring information about physical activities and fall risk, and wearable sensors are promising devices for activity monitoring in daily life scenarios. This paper designed a novel plantar pressure insole and inertial sensor system and presented classification algorithms for activity classification and fall detection. We designed each plantar pressure insole with eight thin uniaxial load cells placed in the key area of a foot. Twenty healthy young adults performed selected activities in the laboratory while wearing the plantar pressure shoes and six inertial measurement units (IMUs) on their feet, shanks, and thighs of both sides. We adopted the convolutional neural network (CNN), ensemble learning, and support vector machine (SVM) methods for activity classification, and the input data were inertial data, pressure data, and both data. We adopted CNN, RNN (recurrent neural network), LSTM (long short-term memory), and CNN-LSTM method for fall detection, and compared results before and after the Dempster-Shafer evidence theory. Results show that for activity classification, CNN with both inertial and plantar pressure data got the best accuracy of 97.1%. For fall detection, the accuracy of RNN, CNN, LSTM, and CNN-LSTM were 93.77%, 95.85%, 96.16%, and 97.76%, respectively. LSTM got comparable accuracy as CNN-LSTM but with much less latency. The presented wearable system and algorithms show good feasibility in activity classification and fall detection, which could serve as a foundation for physical activity monitoring and fall alert systems for elderly people.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liu完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
斩荆披棘发布了新的文献求助10
2秒前
希望天下0贩的0应助errui采纳,获得10
2秒前
3秒前
Jasoncheng发布了新的文献求助10
3秒前
3秒前
LBJ发布了新的文献求助10
4秒前
温暖伟祺发布了新的文献求助10
4秒前
4秒前
6秒前
Liu发布了新的文献求助10
6秒前
阿狸狸狸狸不开完成签到 ,获得积分10
6秒前
ChenXY完成签到,获得积分10
7秒前
没有昵称完成签到 ,获得积分10
7秒前
找文献呢发布了新的文献求助10
7秒前
顾矜应助jia采纳,获得10
8秒前
妮儿发布了新的文献求助10
8秒前
淡定季节发布了新的文献求助10
8秒前
SciGPT应助zhzhzh采纳,获得30
9秒前
9秒前
qiqilu发布了新的文献求助10
9秒前
NexusExplorer应助9047采纳,获得10
10秒前
luxi0714发布了新的文献求助10
10秒前
10秒前
浮游应助hu采纳,获得10
11秒前
11秒前
oRANGE完成签到,获得积分10
11秒前
12秒前
Lucas应助俏皮的松鼠采纳,获得10
12秒前
我是老大应助wzw采纳,获得10
12秒前
传奇3应助俏皮的松鼠采纳,获得10
12秒前
14秒前
14秒前
errui发布了新的文献求助10
14秒前
妖娆发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648842
求助须知:如何正确求助?哪些是违规求助? 4776854
关于积分的说明 15045836
捐赠科研通 4807704
什么是DOI,文献DOI怎么找? 2571046
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486624