CoInNet: A Convolution-Involution Network With a Novel Statistical Attention for Automatic Polyp Segmentation

人工智能 计算机科学 分割 卷积神经网络 模式识别(心理学) 特征提取 图像分割 深度学习 特征(语言学) 计算机视觉 哲学 语言学
作者
Samir Jain,Rohan Atale,Anubhav Gupta,Utkarsh A. Mishra,Ayan Seal,Aparajita Ojha,Joanna Jaworek-Korjakowska,Ondřej Krejcar
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3987-4000 被引量:25
标识
DOI:10.1109/tmi.2023.3320151
摘要

Polyps are very common abnormalities in human gastrointestinal regions. Their early diagnosis may help in reducing the risk of colorectal cancer. Vision-based computer-aided diagnostic systems automatically identify polyp regions to assist surgeons in their removal. Due to their varying shape, color, size, texture, and unclear boundaries, polyp segmentation in images is a challenging problem. Existing deep learning segmentation models mostly rely on convolutional neural networks that have certain limitations in learning the diversity in visual patterns at different spatial locations. Further, they fail to capture inter-feature dependencies. Vision transformer models have also been deployed for polyp segmentation due to their powerful global feature extraction capabilities. But they too are supplemented by convolution layers for learning contextual local information. In the present paper, a polyp segmentation model CoInNet is proposed with a novel feature extraction mechanism that leverages the strengths of convolution and involution operations and learns to highlight polyp regions in images by considering the relationship between different feature maps through a statistical feature attention unit. To further aid the network in learning polyp boundaries, an anomaly boundary approximation module is introduced that uses recursively fed feature fusion to refine segmentation results. It is indeed remarkable that even tiny-sized polyps with only 0.01% of an image area can be precisely segmented by CoInNet. It is crucial for clinical applications, as small polyps can be easily overlooked even in the manual examination due to the voluminous size of wireless capsule endoscopy videos. CoInNet outperforms thirteen state-of-the-art methods on five benchmark polyp segmentation datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cruise发布了新的文献求助10
刚刚
向日葵的Rui完成签到,获得积分10
刚刚
小xy发布了新的文献求助10
刚刚
1秒前
香蕉觅云应助青石采纳,获得10
1秒前
科目三应助yangyang采纳,获得10
1秒前
仄兀发布了新的文献求助10
1秒前
小小鱼发布了新的文献求助10
1秒前
孙成成完成签到 ,获得积分10
2秒前
ee完成签到,获得积分10
2秒前
刘德华完成签到,获得积分10
2秒前
Disci完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
帅气鹭洋发布了新的文献求助10
4秒前
夏昼发布了新的文献求助10
4秒前
cometx完成签到 ,获得积分10
5秒前
路之遥兮发布了新的文献求助10
5秒前
yy发布了新的文献求助10
5秒前
5秒前
852应助100采纳,获得10
5秒前
爱静静应助cruise采纳,获得10
6秒前
Singularity应助cruise采纳,获得10
6秒前
VDC应助cruise采纳,获得30
6秒前
6秒前
6秒前
了晨完成签到 ,获得积分10
7秒前
小xy完成签到,获得积分10
7秒前
8秒前
小昼完成签到 ,获得积分10
8秒前
尊敬的完成签到,获得积分10
9秒前
9秒前
整齐海秋完成签到,获得积分10
9秒前
9秒前
善学以致用应助白榆采纳,获得10
9秒前
JamesPei应助易达采纳,获得10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678