CoInNet: A Convolution-Involution Network With a Novel Statistical Attention for Automatic Polyp Segmentation

人工智能 计算机科学 分割 卷积神经网络 模式识别(心理学) 特征提取 图像分割 深度学习 特征(语言学) 计算机视觉 语言学 哲学
作者
Samir Jain,Rohan Atale,Anubhav Gupta,Utkarsh A. Mishra,Ayan Seal,Aparajita Ojha,Joanna Jaworek-Korjakowska,Ondřej Krejcar
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3987-4000 被引量:35
标识
DOI:10.1109/tmi.2023.3320151
摘要

Polyps are very common abnormalities in human gastrointestinal regions. Their early diagnosis may help in reducing the risk of colorectal cancer. Vision-based computer-aided diagnostic systems automatically identify polyp regions to assist surgeons in their removal. Due to their varying shape, color, size, texture, and unclear boundaries, polyp segmentation in images is a challenging problem. Existing deep learning segmentation models mostly rely on convolutional neural networks that have certain limitations in learning the diversity in visual patterns at different spatial locations. Further, they fail to capture inter-feature dependencies. Vision transformer models have also been deployed for polyp segmentation due to their powerful global feature extraction capabilities. But they too are supplemented by convolution layers for learning contextual local information. In the present paper, a polyp segmentation model CoInNet is proposed with a novel feature extraction mechanism that leverages the strengths of convolution and involution operations and learns to highlight polyp regions in images by considering the relationship between different feature maps through a statistical feature attention unit. To further aid the network in learning polyp boundaries, an anomaly boundary approximation module is introduced that uses recursively fed feature fusion to refine segmentation results. It is indeed remarkable that even tiny-sized polyps with only 0.01% of an image area can be precisely segmented by CoInNet. It is crucial for clinical applications, as small polyps can be easily overlooked even in the manual examination due to the voluminous size of wireless capsule endoscopy videos. CoInNet outperforms thirteen state-of-the-art methods on five benchmark polyp segmentation datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助shelly采纳,获得10
1秒前
开朗安筠完成签到,获得积分20
1秒前
郑龙天发布了新的文献求助10
2秒前
111完成签到,获得积分10
2秒前
小马甲应助WRX采纳,获得10
3秒前
3秒前
晴天不下雨完成签到,获得积分10
3秒前
微笑驳完成签到 ,获得积分10
3秒前
4秒前
俄而完成签到 ,获得积分10
6秒前
7秒前
12345发布了新的文献求助10
8秒前
Kin发布了新的文献求助10
9秒前
oaim发布了新的文献求助10
10秒前
jack应助刘大夫采纳,获得10
10秒前
11秒前
14秒前
15秒前
柴胡完成签到,获得积分10
16秒前
铱金完成签到,获得积分10
17秒前
19秒前
贰鸟应助wwpedd采纳,获得10
20秒前
21秒前
万能图书馆应助mmm采纳,获得10
22秒前
23秒前
23秒前
李健应助飞飞子采纳,获得10
24秒前
shelly发布了新的文献求助10
24秒前
快乐滑板应助Hysen_L采纳,获得10
25秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
烟花应助一只科学家采纳,获得10
27秒前
铱金发布了新的文献求助10
27秒前
Sugar发布了新的文献求助10
28秒前
在水一方应助难得糊涂zq采纳,获得10
30秒前
shu发布了新的文献求助10
30秒前
江小白完成签到,获得积分10
30秒前
大米发布了新的文献求助30
31秒前
31秒前
科研通AI2S应助芜湖采纳,获得10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952472
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11089109
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309