亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multivariate data decomposition based deep learning approach to forecast one-day ahead significant wave height for ocean energy generation

多元统计 标杆管理 气象学 模式(计算机接口) 波高 有效波高 工程类 气候学 环境科学 统计 风浪 计算机科学 数学 地理 地质学 海洋学 业务 营销 操作系统
作者
Zihao Zheng,Mumtaz Ali,Mehdi Jamei,Yong Xiang,Shahab Abdulla,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬,Aitazaz A. Farooque
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:185: 113645-113645 被引量:9
标识
DOI:10.1016/j.rser.2023.113645
摘要

Significant wave height is an average of the largest ocean waves, which are important for renewable and sustainable energy resource generation. A large significant wave height can cause beach erosion, and marine navigation problems in a storm. A novel data decomposition based deep learning modelling framework has been proposed where Multivariate Variational Mode Decomposition (MVMD) is integrated with Gated Recurrent Unit (GRU) to design the MVMD-GRU model. First, a correlation matrix is established to identify statistically important predictor lags. Next, the MVMD is employed to decompose the predictor lags into intrinsic mode functions (IMFs). The GRU model is then applied to the IMFs as inputs to design the MVMD-GRU framework to forecast one-day ahead significant wave height. Several other benchmarking deep learning models were hybridized with MVMD for comparison purposes. The outcomes suggest that the hybrid MVMD-GRU achieved better accuracy using goodness-of-fit metrics for Hay Point, Townsville, and Gold Coast stations in Queensland, Australia. The results show that MVMD significantly improved the forecasting accuracy of the GRU model in terms of WIE = 0.983, 0.918, 0.983, NSE = 0.932, 0.735, 0.934, LME = 0.978, 0.758, 0.752 for Hay Point, Townsville, and Gold Coast stations. This work is valuable to monitor and manage clean energy resources to optimize sustained energy generation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heisa完成签到,获得积分10
14秒前
27秒前
研友_VZG7GZ应助眉间尺采纳,获得10
38秒前
斯文败类应助季刘杰采纳,获得10
53秒前
Ji完成签到,获得积分10
56秒前
1分钟前
1分钟前
季刘杰发布了新的文献求助10
1分钟前
眉间尺发布了新的文献求助10
1分钟前
绵绵球发布了新的文献求助10
1分钟前
1分钟前
sunfield2014发布了新的文献求助10
1分钟前
王波波早睡晚起关注了科研通微信公众号
1分钟前
战战兢兢的失眠完成签到 ,获得积分10
1分钟前
十字路口完成签到 ,获得积分10
1分钟前
1分钟前
善学以致用应助WQY采纳,获得10
1分钟前
Chenly完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
达不溜搽发布了新的文献求助10
1分钟前
2分钟前
WQY发布了新的文献求助10
2分钟前
2分钟前
Eric800824完成签到 ,获得积分10
2分钟前
田様应助季刘杰采纳,获得10
2分钟前
3分钟前
充电宝应助WQY采纳,获得10
3分钟前
季刘杰发布了新的文献求助10
3分钟前
3分钟前
3分钟前
调皮千兰发布了新的文献求助10
3分钟前
WQY发布了新的文献求助10
3分钟前
yanglinhai完成签到 ,获得积分10
3分钟前
调皮千兰发布了新的文献求助10
3分钟前
cenghao应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561415
求助须知:如何正确求助?哪些是违规求助? 4646540
关于积分的说明 14678606
捐赠科研通 4587838
什么是DOI,文献DOI怎么找? 2517229
邀请新用户注册赠送积分活动 1490505
关于科研通互助平台的介绍 1461437