Multivariate data decomposition based deep learning approach to forecast one-day ahead significant wave height for ocean energy generation

多元统计 标杆管理 气象学 模式(计算机接口) 波高 有效波高 工程类 气候学 环境科学 统计 风浪 计算机科学 数学 地理 地质学 海洋学 业务 营销 操作系统
作者
Zihao Zheng,Mumtaz Ali,Mehdi Jamei,Yong Xiang,Shahab Abdulla,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬,Aitazaz A. Farooque
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:185: 113645-113645 被引量:9
标识
DOI:10.1016/j.rser.2023.113645
摘要

Significant wave height is an average of the largest ocean waves, which are important for renewable and sustainable energy resource generation. A large significant wave height can cause beach erosion, and marine navigation problems in a storm. A novel data decomposition based deep learning modelling framework has been proposed where Multivariate Variational Mode Decomposition (MVMD) is integrated with Gated Recurrent Unit (GRU) to design the MVMD-GRU model. First, a correlation matrix is established to identify statistically important predictor lags. Next, the MVMD is employed to decompose the predictor lags into intrinsic mode functions (IMFs). The GRU model is then applied to the IMFs as inputs to design the MVMD-GRU framework to forecast one-day ahead significant wave height. Several other benchmarking deep learning models were hybridized with MVMD for comparison purposes. The outcomes suggest that the hybrid MVMD-GRU achieved better accuracy using goodness-of-fit metrics for Hay Point, Townsville, and Gold Coast stations in Queensland, Australia. The results show that MVMD significantly improved the forecasting accuracy of the GRU model in terms of WIE = 0.983, 0.918, 0.983, NSE = 0.932, 0.735, 0.934, LME = 0.978, 0.758, 0.752 for Hay Point, Townsville, and Gold Coast stations. This work is valuable to monitor and manage clean energy resources to optimize sustained energy generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
水水水完成签到,获得积分10
2秒前
谢慧蕴发布了新的文献求助10
3秒前
爆米花应助加油采纳,获得10
4秒前
烂想家关注了科研通微信公众号
5秒前
binglangcha发布了新的文献求助10
7秒前
Serein完成签到,获得积分10
8秒前
8秒前
爆米花应助赵大虾采纳,获得10
11秒前
11秒前
汉堡包应助欧气青年采纳,获得10
12秒前
111发布了新的文献求助10
13秒前
陈彦滨完成签到 ,获得积分10
13秒前
烂想家发布了新的文献求助10
14秒前
14秒前
明理楷瑞发布了新的文献求助10
14秒前
小蘑菇应助任伟超采纳,获得10
15秒前
Ann完成签到,获得积分10
17秒前
李寒之完成签到 ,获得积分10
18秒前
同尘完成签到,获得积分10
19秒前
19秒前
cuicui发布了新的文献求助10
19秒前
19秒前
明理的曼凡应助111采纳,获得10
19秒前
water应助111采纳,获得10
19秒前
Jasper应助111采纳,获得10
19秒前
11完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
25秒前
25秒前
研友_Zrlk7L发布了新的文献求助10
26秒前
26秒前
26秒前
Thea完成签到,获得积分10
27秒前
田様应助明理楷瑞采纳,获得10
27秒前
Vincent发布了新的文献求助10
27秒前
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993820
求助须知:如何正确求助?哪些是违规求助? 3534462
关于积分的说明 11265617
捐赠科研通 3274313
什么是DOI,文献DOI怎么找? 1806345
邀请新用户注册赠送积分活动 883137
科研通“疑难数据库(出版商)”最低求助积分说明 809712