Principles of Forgetting in Domain-Incremental Semantic Segmentation in Adverse Weather Conditions

遗忘 计算机科学 人工智能 分割 领域(数学分析) 特征(语言学) 机器学习 深度学习 感知 卷积神经网络 认知心理学 数学 心理学 数学分析 语言学 哲学 神经科学 生物
作者
Tobias Kalb,Jürgen Beyerer
标识
DOI:10.1109/cvpr52729.2023.01869
摘要

Deep neural networks for scene perception in automated vehicles achieve excellent results for the domains they were trained on. However, in real-world conditions, the domain of operation and its underlying data distribution are subject to change. Adverse weather conditions, in particular, can significantly decrease model performance when such data are not available during training. Additionally, when a model is incrementally adapted to a new domain, it suffers from catastrophic forgetting, causing a significant drop in performance on previously observed domains. Despite recent progress in reducing catastrophic forgetting, its causes and effects remain obscure. Therefore, we study how the representations of semantic segmentation models are affected during domain-incremental learning in adverse weather conditions. Our experiments and representational analyses indicate that catastrophic forgetting is primarily caused by changes to low-level features in domain-incremental learning and that learning more general features on the source domain using pre-training and image augmentations leads to efficient feature reuse in subsequent tasks, which drastically reduces catastrophic forgetting. These findings highlight the importance of methods that facilitate generalized features for effective continual learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
BL发布了新的文献求助10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
2秒前
俺村俺最牛完成签到,获得积分10
2秒前
meanfun完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
4秒前
meanfun发布了新的文献求助10
4秒前
火龙果发布了新的文献求助30
4秒前
思源应助不低头采纳,获得10
5秒前
小鹿呀发布了新的文献求助10
5秒前
愫浅完成签到,获得积分10
6秒前
结实的凉面完成签到,获得积分10
6秒前
龙江游侠发布了新的文献求助10
6秒前
7秒前
丰富成败完成签到,获得积分10
8秒前
8秒前
8秒前
脑洞疼应助涟漪采纳,获得10
9秒前
zhgj发布了新的文献求助10
9秒前
万能图书馆应助噜啦啦啦采纳,获得10
10秒前
1111111222发布了新的文献求助10
10秒前
10秒前
飞快的语蕊完成签到,获得积分10
11秒前
11秒前
香蕉觅云应助lixiaofan采纳,获得10
12秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470844
求助须知:如何正确求助?哪些是违规求助? 3063847
关于积分的说明 9085670
捐赠科研通 2754320
什么是DOI,文献DOI怎么找? 1511386
邀请新用户注册赠送积分活动 698380
科研通“疑难数据库(出版商)”最低求助积分说明 698253