Multi-scale domain and microstructure engineering for the high-energy-storage BCZT based lead-free relaxor ferroelectric ceramics

材料科学 储能 陶瓷 电介质 微观结构 极化(电化学) 计算机数据存储 铁电性 电压 光电子学 纳米技术 复合材料 电气工程 计算机科学 功率(物理) 热力学 化学 操作系统 物理 工程类 物理化学
作者
Jiayue Song,Fei Yan,Jinfeng Lin,Guanglong Ge,Cheng Shi,Jin Qian,Yali Hao,Yongqi Wei,Wu Yao
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:474: 145754-145754 被引量:15
标识
DOI:10.1016/j.cej.2023.145754
摘要

Fulfilling the stringent demand of the miniature and eco-friendly pulsed power devices, development of high-energy-storage lead-free dielectric energy storage is critical. To achieve this goal, the mature strategy is to induce the formation of relaxor polar nano regions (PNRs) by means of constructing multiple solid solutions and element doping, which will inevitably lead to a significantly weakened polarization. How to better achieve the domain regulation is a challenge. Here, we reconsidered binary composite-induced domain evolution and designed a novel BT-based binary system with Na0.7Bi0.1NbO3 (NBN) modification. By adjusting the NBN content to retain the long-range ferroelectric domains and applying the hot-pressing (HP) method to modulate grain size, the coupling of multi-scale domain morphology and voltage allocation can be achieved, simultaneously contributing to the high polarization, the enhanced breakdown strength and the optimized polarization response. Accordingly, a 130% enhancement to 5.32 J/cm3 in energy storage density, a high energy storage efficiency of ∼ 90%, an ultrafast discharge period of ∼ 55 ns, and a giant power density of ∼ 369.9 MW/cm3 were realized in our HP ceramics, superior to the existing dielectric ceramics. Moreover, the energy storage properties also exhibited superior frequency and thermal stability. The proposed synergistic optimization strategy of the domain morphology regulation and the microstructure adjustment is valuable for further energy storage design, and the enhanced energy storage properties promote the applications for lead-free dielectrics in energy storage devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy发布了新的文献求助10
刚刚
刚刚
1秒前
Orange应助kaicunY采纳,获得10
1秒前
所所应助年轻冥茗采纳,获得10
1秒前
cjuntao完成签到,获得积分10
2秒前
Akim应助研友_nPxRRn采纳,获得10
3秒前
momo完成签到,获得积分10
3秒前
俏皮小小完成签到,获得积分10
3秒前
pfguo完成签到,获得积分10
4秒前
yyy发布了新的文献求助10
4秒前
tiantian发布了新的文献求助10
4秒前
烟酒生发布了新的文献求助10
5秒前
5秒前
5秒前
mrc发布了新的文献求助10
6秒前
彩色毛巾完成签到 ,获得积分10
6秒前
lys完成签到,获得积分10
6秒前
slz发布了新的文献求助10
6秒前
7秒前
舒适的亦瑶完成签到,获得积分10
8秒前
Lucas应助yy采纳,获得10
9秒前
Owen应助rudjs采纳,获得10
9秒前
二虎完成签到,获得积分10
9秒前
10秒前
10秒前
qinz完成签到,获得积分20
11秒前
11秒前
11秒前
12秒前
wangwangdui发布了新的文献求助10
12秒前
明钟达发布了新的文献求助10
12秒前
13秒前
努力的学发布了新的文献求助10
14秒前
Lucas应助JiaweiZhang采纳,获得10
15秒前
青岩发布了新的文献求助10
16秒前
李健的小迷弟应助貔貅采纳,获得10
17秒前
仙女发布了新的文献求助10
17秒前
17秒前
castor发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552161
求助须知:如何正确求助?哪些是违规求助? 3128470
关于积分的说明 9378076
捐赠科研通 2827552
什么是DOI,文献DOI怎么找? 1554473
邀请新用户注册赠送积分活动 725481
科研通“疑难数据库(出版商)”最低求助积分说明 714915