亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Locating Dipole Source Using Self-Propelled Robotic Fish With Artificial Lateral Line System

人工智能 机器人 直线(几何图形) 计算机科学 工程类 数学 生物 物理 几何学 渔业
作者
Changlin Qiu,Zhengxing Wu,Jian Wang,Min Tan,Junzhi Yu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 5216-5226 被引量:3
标识
DOI:10.1109/tase.2023.3309905
摘要

Artificial lateral line (ALL) sensors hold the potential to enhance the perception abilities of robotic fish by capturing surface pressure gradients and identifying near-field object, such as dipole source. However, the robotic fish's free-swimming motion introduces periodic low-frequency noise into the ALL data, while dipole sources with time-varying positions generate pressure signals with complex time-frequency characteristics. This paper proposes a complete solution to these challenges that would enable freely swimming robotic fish to locate dipole source. Firstly, an ALL system consisting of pressure sensors is integrated into the robotic fish, further constructing a real-time data acquisition and processing system. Secondly, to effectively estimate and remove the swimming-induced noise from the ALL data, a noise estimation model is developed based on the bionic motion mode and unsteady Bernoulli equation. Subsequently, short-time Fourier transform is applied to the high-quality data after noise elimination, followed by developing a convolution regression neural network for feature extraction and dipole source localization. Finally, extensive simulations and experiments are conducted to validate the effectiveness of the proposed methods and perform the positive impact of the noise estimation model. Remarkably, within the range of perception, the average accuracy of dipole source location can reach 13.6 mm, providing a promising reference for improving the perception abilities of underwater robots. Note to Practitioners —This paper is motivated by the problem of blind zones in near-field perception of underwater robots. The existing perception methods as visual sensing are limited by the dark and cloudy underwater environment, and are powerless in near-field localization. In addition, the artificial lateral line, as a potential near-field sensor, is challenging to be applied in self-propelled robots due to the swimming noise. This paper proposes an integrated near-field sensory system that includes an ALL sensor, a swimming noise elimination method and a dipole source localization method. Specifically, a fish-inspired ALL sensor is designed by high-accuracy pressure sensors and integrated into the robotic fish. To enhance localization performance, a swimming noise elimination model is constructed based on unsteady Bernoulli equation. Furthermore, a convolution regression network is developed for accurate localization of near-field objects. A series of simulations and experiments demonstrate the effectiveness and superiority of the proposed near-field sensory system. Hopefully, our proposed methods can provide valuable guidance and support for near-field object localization to improve the intelligent operation ability of underwater bionic robots, such as cooperative control, underwater navigation, environment exploration, and so forth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
AaronW完成签到 ,获得积分10
12秒前
dbyy发布了新的文献求助10
14秒前
大熊完成签到 ,获得积分10
17秒前
19秒前
FashionBoy应助曦耀采纳,获得10
21秒前
超帅的龙猫完成签到,获得积分10
34秒前
qq完成签到,获得积分10
49秒前
李健应助曦耀采纳,获得10
1分钟前
qq发布了新的文献求助10
1分钟前
务实的犀牛完成签到,获得积分10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
1分钟前
要减肥的春天完成签到,获得积分10
1分钟前
共享精神应助冷酷的鹏涛采纳,获得10
1分钟前
uss完成签到,获得积分10
1分钟前
阿布应助仁爱的念文采纳,获得10
2分钟前
从来都不会放弃zr完成签到,获得积分10
2分钟前
直率的雪巧完成签到,获得积分10
2分钟前
科研通AI6应助inRe采纳,获得10
2分钟前
研友_VZG7GZ应助xuzb采纳,获得10
2分钟前
2分钟前
3分钟前
斯文败类应助SiboN采纳,获得10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
思源应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
冷酷的鹏涛完成签到,获得积分10
3分钟前
3分钟前
墨薄凉完成签到 ,获得积分10
3分钟前
轻松一曲应助inRe采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628172
求助须知:如何正确求助?哪些是违规求助? 4715898
关于积分的说明 14963806
捐赠科研通 4785879
什么是DOI,文献DOI怎么找? 2555413
邀请新用户注册赠送积分活动 1516720
关于科研通互助平台的介绍 1477252