Locating Dipole Source Using Self-Propelled Robotic Fish With Artificial Lateral Line System

噪音(视频) 人工智能 机器人 计算机科学 声学 计算机视觉 物理 图像(数学)
作者
Changlin Qiu,Zhengxing Wu,Jian Wang,Min Tan,Junzhi Yu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:2
标识
DOI:10.1109/tase.2023.3309905
摘要

Artificial lateral line (ALL) sensors hold the potential to enhance the perception abilities of robotic fish by capturing surface pressure gradients and identifying near-field object, such as dipole source. However, the robotic fish’s free-swimming motion introduces periodic low-frequency noise into the ALL data, while dipole sources with time-varying positions generate pressure signals with complex time-frequency characteristics. This paper proposes a complete solution to these challenges that would enable freely swimming robotic fish to locate dipole source. Firstly, an ALL system consisting of pressure sensors is integrated into the robotic fish, further constructing a real-time data acquisition and processing system. Secondly, to effectively estimate and remove the swimming-induced noise from the ALL data, a noise estimation model is developed based on the bionic motion mode and unsteady Bernoulli equation. Subsequently, short-time Fourier transform is applied to the high-quality data after noise elimination, followed by developing a convolution regression neural network for feature extraction and dipole source localization. Finally, extensive simulations and experiments are conducted to validate the effectiveness of the proposed methods and perform the positive impact of the noise estimation model. Remarkably, within the range of perception, the average accuracy of dipole source location can reach 13.6 mm, providing a promising reference for improving the perception abilities of underwater robots. Note to Practitioners —This paper is motivated by the problem of blind zones in near-field perception of underwater robots. The existing perception methods as visual sensing are limited by the dark and cloudy underwater environment, and are powerless in near-field localization. In addition, the artificial lateral line, as a potential near-field sensor, is challenging to be applied in self-propelled robots due to the swimming noise. This paper proposes an integrated near-field sensory system that includes an ALL sensor, a swimming noise elimination method and a dipole source localization method. Specifically, a fish-inspired ALL sensor is designed by high-accuracy pressure sensors and integrated into the robotic fish. To enhance localization performance, a swimming noise elimination model is constructed based on unsteady Bernoulli equation. Furthermore, a convolution regression network is developed for accurate localization of near-field objects. A series of simulations and experiments demonstrate the effectiveness and superiority of the proposed near-field sensory system. Hopefully, our proposed methods can provide valuable guidance and support for near-field object localization to improve the intelligent operation ability of underwater bionic robots, such as cooperative control, underwater navigation, environment exploration, and so forth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助holly采纳,获得10
刚刚
我的文献呢应助如意板栗采纳,获得30
刚刚
小巧富发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
JamesPei应助崔崔采纳,获得10
2秒前
害怕的擎宇完成签到,获得积分10
3秒前
小小苏荷完成签到,获得积分10
4秒前
lichanshen发布了新的文献求助10
5秒前
6秒前
MM发布了新的文献求助10
6秒前
Lucas应助会神采纳,获得10
6秒前
认真胜关注了科研通微信公众号
7秒前
laura发布了新的文献求助10
7秒前
干净黄豆发布了新的文献求助10
9秒前
佘炭炭完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
a1313发布了新的文献求助10
12秒前
研友_VZG7GZ应助淡定的半梦采纳,获得10
14秒前
zzzz应助摆烂小咸鱼采纳,获得10
14秒前
Zjx发布了新的文献求助10
14秒前
鸣笛应助Han采纳,获得20
14秒前
tt大耳朵完成签到,获得积分10
15秒前
lym关注了科研通微信公众号
15秒前
小二郎应助嘿嘿嘿采纳,获得10
15秒前
sunny心晴完成签到 ,获得积分10
16秒前
NexusExplorer应助创新采纳,获得10
16秒前
车 干完成签到 ,获得积分10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
SYLH应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
SYLH应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
renheit应助科研通管家采纳,获得30
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992562
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262757
捐赠科研通 3273163
什么是DOI,文献DOI怎么找? 1805959
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809513