亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Locating Dipole Source Using Self-Propelled Robotic Fish With Artificial Lateral Line System

噪音(视频) 人工智能 机器人 计算机科学 声学 计算机视觉 物理 图像(数学)
作者
Changlin Qiu,Zhengxing Wu,Jian Wang,Min Tan,Junzhi Yu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:2
标识
DOI:10.1109/tase.2023.3309905
摘要

Artificial lateral line (ALL) sensors hold the potential to enhance the perception abilities of robotic fish by capturing surface pressure gradients and identifying near-field object, such as dipole source. However, the robotic fish’s free-swimming motion introduces periodic low-frequency noise into the ALL data, while dipole sources with time-varying positions generate pressure signals with complex time-frequency characteristics. This paper proposes a complete solution to these challenges that would enable freely swimming robotic fish to locate dipole source. Firstly, an ALL system consisting of pressure sensors is integrated into the robotic fish, further constructing a real-time data acquisition and processing system. Secondly, to effectively estimate and remove the swimming-induced noise from the ALL data, a noise estimation model is developed based on the bionic motion mode and unsteady Bernoulli equation. Subsequently, short-time Fourier transform is applied to the high-quality data after noise elimination, followed by developing a convolution regression neural network for feature extraction and dipole source localization. Finally, extensive simulations and experiments are conducted to validate the effectiveness of the proposed methods and perform the positive impact of the noise estimation model. Remarkably, within the range of perception, the average accuracy of dipole source location can reach 13.6 mm, providing a promising reference for improving the perception abilities of underwater robots. Note to Practitioners —This paper is motivated by the problem of blind zones in near-field perception of underwater robots. The existing perception methods as visual sensing are limited by the dark and cloudy underwater environment, and are powerless in near-field localization. In addition, the artificial lateral line, as a potential near-field sensor, is challenging to be applied in self-propelled robots due to the swimming noise. This paper proposes an integrated near-field sensory system that includes an ALL sensor, a swimming noise elimination method and a dipole source localization method. Specifically, a fish-inspired ALL sensor is designed by high-accuracy pressure sensors and integrated into the robotic fish. To enhance localization performance, a swimming noise elimination model is constructed based on unsteady Bernoulli equation. Furthermore, a convolution regression network is developed for accurate localization of near-field objects. A series of simulations and experiments demonstrate the effectiveness and superiority of the proposed near-field sensory system. Hopefully, our proposed methods can provide valuable guidance and support for near-field object localization to improve the intelligent operation ability of underwater bionic robots, such as cooperative control, underwater navigation, environment exploration, and so forth.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
4秒前
7秒前
Soleil发布了新的文献求助10
9秒前
韩冬冬发布了新的文献求助10
12秒前
吴雪完成签到 ,获得积分10
13秒前
1461完成签到 ,获得积分10
13秒前
伊笙完成签到 ,获得积分10
22秒前
Darcy完成签到,获得积分10
22秒前
迷你的幻姬完成签到 ,获得积分10
24秒前
矢思然完成签到,获得积分10
26秒前
星辰发布了新的文献求助10
27秒前
汤汤完成签到 ,获得积分10
30秒前
华仔应助胡图图采纳,获得10
31秒前
Ly完成签到,获得积分10
33秒前
如若初心给如若初心的求助进行了留言
37秒前
桐桐应助DALUDALU采纳,获得10
39秒前
45秒前
胡图图发布了新的文献求助10
52秒前
yikeguozi完成签到,获得积分10
53秒前
如若初心给如若初心的求助进行了留言
56秒前
1分钟前
DALUDALU发布了新的文献求助10
1分钟前
huaaaaaa1完成签到,获得积分20
1分钟前
苯二氮卓完成签到 ,获得积分10
1分钟前
1分钟前
爆米花应助可可杨采纳,获得10
1分钟前
JY应助一路狂奔等不了采纳,获得10
1分钟前
bynowcc完成签到 ,获得积分10
1分钟前
huaaaaaa1发布了新的文献求助10
1分钟前
YifanWang应助亮星星采纳,获得10
1分钟前
DALUDALU完成签到,获得积分10
1分钟前
糖醋里脊加醋完成签到 ,获得积分10
1分钟前
1分钟前
欣喜的迎波完成签到,获得积分10
1分钟前
爱笑可乐完成签到,获得积分10
1分钟前
Jayden完成签到 ,获得积分10
1分钟前
Okanryo发布了新的文献求助200
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133873
求助须知:如何正确求助?哪些是违规求助? 2784804
关于积分的说明 7768520
捐赠科研通 2440159
什么是DOI,文献DOI怎么找? 1297188
科研通“疑难数据库(出版商)”最低求助积分说明 624901
版权声明 600791