Locating Dipole Source Using Self-Propelled Robotic Fish With Artificial Lateral Line System

人工智能 机器人 直线(几何图形) 计算机科学 工程类 数学 生物 物理 几何学 渔业
作者
Changlin Qiu,Zhengxing Wu,Jian Wang,Min Tan,Junzhi Yu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 5216-5226 被引量:3
标识
DOI:10.1109/tase.2023.3309905
摘要

Artificial lateral line (ALL) sensors hold the potential to enhance the perception abilities of robotic fish by capturing surface pressure gradients and identifying near-field object, such as dipole source. However, the robotic fish's free-swimming motion introduces periodic low-frequency noise into the ALL data, while dipole sources with time-varying positions generate pressure signals with complex time-frequency characteristics. This paper proposes a complete solution to these challenges that would enable freely swimming robotic fish to locate dipole source. Firstly, an ALL system consisting of pressure sensors is integrated into the robotic fish, further constructing a real-time data acquisition and processing system. Secondly, to effectively estimate and remove the swimming-induced noise from the ALL data, a noise estimation model is developed based on the bionic motion mode and unsteady Bernoulli equation. Subsequently, short-time Fourier transform is applied to the high-quality data after noise elimination, followed by developing a convolution regression neural network for feature extraction and dipole source localization. Finally, extensive simulations and experiments are conducted to validate the effectiveness of the proposed methods and perform the positive impact of the noise estimation model. Remarkably, within the range of perception, the average accuracy of dipole source location can reach 13.6 mm, providing a promising reference for improving the perception abilities of underwater robots. Note to Practitioners —This paper is motivated by the problem of blind zones in near-field perception of underwater robots. The existing perception methods as visual sensing are limited by the dark and cloudy underwater environment, and are powerless in near-field localization. In addition, the artificial lateral line, as a potential near-field sensor, is challenging to be applied in self-propelled robots due to the swimming noise. This paper proposes an integrated near-field sensory system that includes an ALL sensor, a swimming noise elimination method and a dipole source localization method. Specifically, a fish-inspired ALL sensor is designed by high-accuracy pressure sensors and integrated into the robotic fish. To enhance localization performance, a swimming noise elimination model is constructed based on unsteady Bernoulli equation. Furthermore, a convolution regression network is developed for accurate localization of near-field objects. A series of simulations and experiments demonstrate the effectiveness and superiority of the proposed near-field sensory system. Hopefully, our proposed methods can provide valuable guidance and support for near-field object localization to improve the intelligent operation ability of underwater bionic robots, such as cooperative control, underwater navigation, environment exploration, and so forth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
茉莉发布了新的文献求助20
刚刚
郁子完成签到 ,获得积分10
刚刚
贾克斯发布了新的文献求助10
刚刚
刚刚
闪闪白柏发布了新的文献求助10
1秒前
爆米花应助欣喜的听枫采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
万莎莎完成签到 ,获得积分10
2秒前
3秒前
在水一方应助yeti采纳,获得10
3秒前
dslnfakjnij完成签到 ,获得积分10
4秒前
小橘完成签到 ,获得积分10
4秒前
世界和平发布了新的文献求助10
5秒前
小二郎应助贾克斯采纳,获得10
6秒前
Owen应助gkq采纳,获得10
6秒前
qq发布了新的文献求助10
7秒前
7秒前
张紫茹完成签到,获得积分10
8秒前
风起时发布了新的文献求助10
8秒前
浮游应助joleisalau采纳,获得10
9秒前
9秒前
zhangshan发布了新的文献求助10
10秒前
flysky120完成签到,获得积分10
10秒前
李静怡完成签到,获得积分10
11秒前
juno完成签到,获得积分10
12秒前
12秒前
nifty完成签到,获得积分10
12秒前
ZXB关闭了ZXB文献求助
13秒前
14秒前
小小米发布了新的文献求助10
14秒前
15秒前
无极微光应助白桃味的夏采纳,获得20
15秒前
九千七完成签到,获得积分10
15秒前
16秒前
mumu发布了新的文献求助10
16秒前
完美世界应助Li_Soft采纳,获得10
16秒前
充电宝应助最终幻想采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941339
求助须知:如何正确求助?哪些是违规求助? 4207390
关于积分的说明 13077624
捐赠科研通 3986257
什么是DOI,文献DOI怎么找? 2182529
邀请新用户注册赠送积分活动 1198125
关于科研通互助平台的介绍 1110387