Robust implementation of foreground extraction and vessel segmentation for X-ray coronary angiography image sequence

计算机科学 分割 人工智能 预处理器 计算机视觉 稳健主成分分析 模式识别(心理学) 主成分分析 算法
作者
Zeyu Fu,Zhuang Fu,Chenzhuo Lu,Jin Yan,Jian Fei,Hui Han
出处
期刊:Pattern Recognition [Elsevier]
卷期号:145: 109926-109926 被引量:1
标识
DOI:10.1016/j.patcog.2023.109926
摘要

The extraction of contrast-filled vessels from X-ray coronary angiography (XCA) image sequence has important clinical significance for intuitively diagnosis and therapy. In this study, the XCA image sequence is regarded as a 3D tensor input, the vessel layer is regarded as a sparse tensor, and the background layer is regarded as a low-rank tensor. Using tensor nuclear norm (TNN) minimization, a novel method for vessel layer extraction based on tensor robust principal component analysis (TRPCA) is proposed. Furthermore, considering the irregular movement of vessels and the low-frequency dynamic disturbance of surrounding irrelevant tissues, the total variation (TV) regularized spatial–temporal constraint is introduced to smooth the foreground layer. Subsequently, for vessel layer images with uneven contrast distribution, a two-stage region growing (TSRG) method is utilized for vessel enhancement and segmentation. A global threshold method is used as the preprocessing to obtain main branches, and the Radon-Like features (RLF) filter is used to enhance and connect broken minor segments. The final binary vessel mask is constructed by combining the two intermediate results. The visibility of TV-TRPCA algorithm for foreground extraction is evaluated on clinical XCA image sequences and third-party dataset, which can effectively improve the performance of commonly used vessel segmentation algorithms. Based on TV-TRPCA, the accuracy of TSRG algorithm for vessel segmentation is further evaluated. Both qualitative and quantitative results validate the superiority of the proposed method over existing state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
讨厌下雨天完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
lii完成签到,获得积分10
4秒前
哦哦完成签到,获得积分10
5秒前
ninomae完成签到 ,获得积分10
8秒前
渴望者完成签到,获得积分10
8秒前
lzl007完成签到 ,获得积分10
9秒前
只争朝夕完成签到,获得积分10
11秒前
yin完成签到,获得积分10
11秒前
abbytang完成签到 ,获得积分10
11秒前
优雅沛文完成签到 ,获得积分10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
sjw525完成签到,获得积分10
13秒前
小公牛完成签到 ,获得积分10
15秒前
李正纲完成签到 ,获得积分10
16秒前
Criminology34应助1101592875采纳,获得10
21秒前
21秒前
22秒前
孟小宝完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
mojomars完成签到,获得积分0
24秒前
ryq327完成签到 ,获得积分10
25秒前
俏皮的老三完成签到 ,获得积分10
29秒前
小高同学完成签到,获得积分10
30秒前
潇洒的蝴蝶完成签到,获得积分10
31秒前
dldldl完成签到,获得积分10
31秒前
32秒前
养鸟的人完成签到,获得积分10
33秒前
Tin完成签到,获得积分10
33秒前
33秒前
Moonpie完成签到 ,获得积分10
34秒前
如意雨雪完成签到 ,获得积分10
36秒前
37秒前
自来也完成签到,获得积分10
37秒前
俏皮元珊完成签到 ,获得积分10
38秒前
Sean发布了新的文献求助10
38秒前
杨杨杨完成签到,获得积分10
38秒前
39秒前
四夕完成签到 ,获得积分10
39秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590