Robust implementation of foreground extraction and vessel segmentation for X-ray coronary angiography image sequence

计算机科学 分割 人工智能 预处理器 计算机视觉 稳健主成分分析 模式识别(心理学) 主成分分析 算法
作者
Zeyu Fu,Zhuang Fu,Chenzhuo Lu,Jin Yan,Jian Fei,Hui Han
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:145: 109926-109926 被引量:1
标识
DOI:10.1016/j.patcog.2023.109926
摘要

The extraction of contrast-filled vessels from X-ray coronary angiography (XCA) image sequence has important clinical significance for intuitively diagnosis and therapy. In this study, the XCA image sequence is regarded as a 3D tensor input, the vessel layer is regarded as a sparse tensor, and the background layer is regarded as a low-rank tensor. Using tensor nuclear norm (TNN) minimization, a novel method for vessel layer extraction based on tensor robust principal component analysis (TRPCA) is proposed. Furthermore, considering the irregular movement of vessels and the low-frequency dynamic disturbance of surrounding irrelevant tissues, the total variation (TV) regularized spatial–temporal constraint is introduced to smooth the foreground layer. Subsequently, for vessel layer images with uneven contrast distribution, a two-stage region growing (TSRG) method is utilized for vessel enhancement and segmentation. A global threshold method is used as the preprocessing to obtain main branches, and the Radon-Like features (RLF) filter is used to enhance and connect broken minor segments. The final binary vessel mask is constructed by combining the two intermediate results. The visibility of TV-TRPCA algorithm for foreground extraction is evaluated on clinical XCA image sequences and third-party dataset, which can effectively improve the performance of commonly used vessel segmentation algorithms. Based on TV-TRPCA, the accuracy of TSRG algorithm for vessel segmentation is further evaluated. Both qualitative and quantitative results validate the superiority of the proposed method over existing state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助pop采纳,获得10
刚刚
打打应助青岛采纳,获得10
1秒前
panmin发布了新的文献求助10
2秒前
FOODHUA完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
传奇3应助柔弱雅彤采纳,获得10
3秒前
脑洞疼应助柔弱雅彤采纳,获得10
4秒前
4秒前
俭朴的天曼完成签到,获得积分10
4秒前
LIN完成签到,获得积分10
4秒前
跳跳虎完成签到 ,获得积分10
5秒前
5秒前
松宇关注了科研通微信公众号
5秒前
5秒前
枫于林完成签到 ,获得积分10
5秒前
快乐丸子发布了新的文献求助20
5秒前
6秒前
大个应助告辞采纳,获得10
6秒前
6秒前
镁铝硅磷完成签到,获得积分10
6秒前
大个应助彩色的过客采纳,获得10
6秒前
6秒前
7秒前
孤独的远山完成签到,获得积分10
7秒前
Xiaoxiao应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
子车茗应助科研通管家采纳,获得20
7秒前
哈哈应助科研通管家采纳,获得10
7秒前
子车茗应助科研通管家采纳,获得20
7秒前
小远远应助科研通管家采纳,获得10
7秒前
哈基米德应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
海波完成签到,获得积分10
7秒前
子车茗应助科研通管家采纳,获得20
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
小远远应助科研通管家采纳,获得10
8秒前
哈哈应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067604
求助须知:如何正确求助?哪些是违规求助? 4289401
关于积分的说明 13363233
捐赠科研通 4108943
什么是DOI,文献DOI怎么找? 2250001
邀请新用户注册赠送积分活动 1255446
关于科研通互助平台的介绍 1187947