Robust implementation of foreground extraction and vessel segmentation for X-ray coronary angiography image sequence

计算机科学 分割 人工智能 预处理器 计算机视觉 稳健主成分分析 模式识别(心理学) 主成分分析 算法
作者
Zeyu Fu,Zhuang Fu,Chenzhuo Lu,Jin Yan,Jian Fei,Hui Han
出处
期刊:Pattern Recognition [Elsevier]
卷期号:145: 109926-109926 被引量:1
标识
DOI:10.1016/j.patcog.2023.109926
摘要

The extraction of contrast-filled vessels from X-ray coronary angiography (XCA) image sequence has important clinical significance for intuitively diagnosis and therapy. In this study, the XCA image sequence is regarded as a 3D tensor input, the vessel layer is regarded as a sparse tensor, and the background layer is regarded as a low-rank tensor. Using tensor nuclear norm (TNN) minimization, a novel method for vessel layer extraction based on tensor robust principal component analysis (TRPCA) is proposed. Furthermore, considering the irregular movement of vessels and the low-frequency dynamic disturbance of surrounding irrelevant tissues, the total variation (TV) regularized spatial–temporal constraint is introduced to smooth the foreground layer. Subsequently, for vessel layer images with uneven contrast distribution, a two-stage region growing (TSRG) method is utilized for vessel enhancement and segmentation. A global threshold method is used as the preprocessing to obtain main branches, and the Radon-Like features (RLF) filter is used to enhance and connect broken minor segments. The final binary vessel mask is constructed by combining the two intermediate results. The visibility of TV-TRPCA algorithm for foreground extraction is evaluated on clinical XCA image sequences and third-party dataset, which can effectively improve the performance of commonly used vessel segmentation algorithms. Based on TV-TRPCA, the accuracy of TSRG algorithm for vessel segmentation is further evaluated. Both qualitative and quantitative results validate the superiority of the proposed method over existing state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助符雁采纳,获得10
1秒前
太阳雨发布了新的文献求助10
1秒前
贪玩的访风完成签到 ,获得积分10
2秒前
2秒前
舍曲林完成签到,获得积分10
2秒前
XiYang完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
sophie完成签到,获得积分10
3秒前
4秒前
吴大打发布了新的文献求助10
5秒前
5秒前
123发布了新的文献求助10
6秒前
qy97发布了新的文献求助10
7秒前
xny发布了新的文献求助10
8秒前
刘艳芬完成签到 ,获得积分10
8秒前
52705关注了科研通微信公众号
8秒前
hanchangcun发布了新的文献求助10
8秒前
年华发布了新的文献求助10
9秒前
李健的小迷弟应助小刀刀采纳,获得10
11秒前
13秒前
炸鸡腿发布了新的文献求助30
14秒前
英俊的铭应助will采纳,获得30
14秒前
自由的未来完成签到,获得积分10
15秒前
无私的以亦完成签到 ,获得积分10
18秒前
19秒前
111完成签到,获得积分10
21秒前
21秒前
Mumu发布了新的文献求助10
21秒前
22秒前
52705发布了新的文献求助10
23秒前
传奇3应助46464号采纳,获得10
23秒前
高高完成签到,获得积分10
24秒前
袁宁蔓完成签到,获得积分10
24秒前
lcc发布了新的文献求助10
24秒前
25秒前
26秒前
Singularity应助李麟采纳,获得10
27秒前
圆圈应助李麟采纳,获得10
27秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141929
求助须知:如何正确求助?哪些是违规求助? 2792912
关于积分的说明 7804490
捐赠科研通 2449236
什么是DOI,文献DOI怎么找? 1303108
科研通“疑难数据库(出版商)”最低求助积分说明 626771
版权声明 601291