Robust implementation of foreground extraction and vessel segmentation for X-ray coronary angiography image sequence

计算机科学 分割 人工智能 预处理器 计算机视觉 稳健主成分分析 模式识别(心理学) 主成分分析 算法
作者
Zeyu Fu,Zhuang Fu,Chenzhuo Lu,Jin Yan,Jian Fei,Hui Han
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:145: 109926-109926 被引量:1
标识
DOI:10.1016/j.patcog.2023.109926
摘要

The extraction of contrast-filled vessels from X-ray coronary angiography (XCA) image sequence has important clinical significance for intuitively diagnosis and therapy. In this study, the XCA image sequence is regarded as a 3D tensor input, the vessel layer is regarded as a sparse tensor, and the background layer is regarded as a low-rank tensor. Using tensor nuclear norm (TNN) minimization, a novel method for vessel layer extraction based on tensor robust principal component analysis (TRPCA) is proposed. Furthermore, considering the irregular movement of vessels and the low-frequency dynamic disturbance of surrounding irrelevant tissues, the total variation (TV) regularized spatial–temporal constraint is introduced to smooth the foreground layer. Subsequently, for vessel layer images with uneven contrast distribution, a two-stage region growing (TSRG) method is utilized for vessel enhancement and segmentation. A global threshold method is used as the preprocessing to obtain main branches, and the Radon-Like features (RLF) filter is used to enhance and connect broken minor segments. The final binary vessel mask is constructed by combining the two intermediate results. The visibility of TV-TRPCA algorithm for foreground extraction is evaluated on clinical XCA image sequences and third-party dataset, which can effectively improve the performance of commonly used vessel segmentation algorithms. Based on TV-TRPCA, the accuracy of TSRG algorithm for vessel segmentation is further evaluated. Both qualitative and quantitative results validate the superiority of the proposed method over existing state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
纸质超人发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
风趣的觅山完成签到,获得积分10
1秒前
wanci应助STDRM采纳,获得10
1秒前
1秒前
金荣发布了新的文献求助20
2秒前
丘比特应助岩追研采纳,获得10
3秒前
Husayn完成签到,获得积分10
3秒前
3秒前
帆蚌侠发布了新的文献求助10
3秒前
火狐狸kc完成签到,获得积分10
4秒前
小丁发布了新的文献求助10
4秒前
SWL完成签到,获得积分10
4秒前
小蘑菇应助一只猫猫头采纳,获得20
5秒前
5秒前
猹尔斯发布了新的文献求助10
5秒前
xxxx完成签到,获得积分10
5秒前
桐桐应助Chem采纳,获得10
5秒前
酷波er应助小香草采纳,获得20
5秒前
Logan发布了新的文献求助10
6秒前
yizhiyeqiu发布了新的文献求助10
6秒前
6秒前
77777发布了新的文献求助10
6秒前
FashionBoy应助wu采纳,获得10
7秒前
7秒前
an完成签到,获得积分10
8秒前
许子健发布了新的文献求助10
8秒前
大个应助小豆采纳,获得10
8秒前
可靠觅珍完成签到,获得积分10
9秒前
9秒前
FashionBoy应助PaoPao采纳,获得10
10秒前
Cc发布了新的文献求助10
10秒前
自然怀寒完成签到,获得积分10
10秒前
SWL发布了新的文献求助20
11秒前
天真白天完成签到,获得积分10
11秒前
一年5篇发布了新的文献求助10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646