Prediction of five-axis machining-induced residual stress based on cutting parameter identification

机械加工 残余应力 材料科学 残余物 均方预测误差 压力(语言学) 机械工程 计算机科学 复合材料 算法 冶金 工程类 语言学 哲学
作者
Zehua Wang,Sibao Wang,Shilong Wang,Zengya Zhao,Tao Yang,Zhenhua Su
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:103: 320-336 被引量:5
标识
DOI:10.1016/j.jmapro.2023.08.050
摘要

The performance of the machined surface is significantly affected by the machining-induced residual stress (Rs), which should be well predicted for better regulation. However, the real-time factors, such as positioning error, and installation error, will make the actual cutting parameters (ACP) deviated from the designed cutting parameters (DCP), and decrease the Rs prediction accuracy. Thus, this paper proposes a novel cutting parameter identification method to improve the prediction accuracy of five-axis machining-induced residual stress. Firstly, the cutting parameter (the cutting width is used in this paper) is identified inversely by the real-time cutting force, which provides input parameters for the accurate Rs prediction. Then, the mechanical stress and the thermal stress are recalculated by the identified cutting parameters to improve the prediction accuracy. Finally, the loading conditions are determined by considering the effects of cutter postures, and the Rs prediction model is established in five-axis milling. Based on the experimental validation, the identified cutting parameters (ICP) are more closely to ACP. For example, the mean error of the identified cutting depth decreases from 0.075 mm to 0.03 mm, and the error rates of simulated temperature rise are significantly reduced by 68.8 %. The Rs prediction error rate obtained by ICP significantly decreases by 48.1 %. The proposed method improves the Rs prediction precision by inversely identifying the cutting parameter with the real-time cutting force. It benefits real-time control of Rs for the better surface quality of machined parts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Murphy完成签到 ,获得积分10
刚刚
斯文败类应助大方嵩采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得30
1秒前
hh应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得20
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
sutharsons应助科研通管家采纳,获得200
2秒前
orixero应助科研通管家采纳,获得10
2秒前
许多知识发布了新的文献求助10
3秒前
FashionBoy应助su采纳,获得10
3秒前
3秒前
运敬完成签到 ,获得积分10
4秒前
XSB完成签到,获得积分10
4秒前
青草蛋糕完成签到 ,获得积分10
4秒前
怡然剑成完成签到,获得积分10
4秒前
4秒前
liyuchen发布了新的文献求助10
5秒前
ipeakkka完成签到,获得积分20
7秒前
马克发布了新的文献求助10
7秒前
赵OO完成签到,获得积分10
7秒前
Yon完成签到 ,获得积分10
8秒前
呆头完成签到,获得积分10
8秒前
科研通AI5应助skier采纳,获得10
9秒前
ywang发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
keyantong完成签到 ,获得积分10
15秒前
booshu完成签到,获得积分10
16秒前
jy发布了新的文献求助10
17秒前
朴斓完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824