Prediction of five-axis machining-induced residual stress based on cutting parameter identification

机械加工 残余应力 材料科学 残余物 均方预测误差 压力(语言学) 机械工程 计算机科学 复合材料 算法 冶金 工程类 语言学 哲学
作者
Zehua Wang,Sibao Wang,Shilong Wang,Zengya Zhao,Tao Yang,Zhenhua Su
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:103: 320-336 被引量:5
标识
DOI:10.1016/j.jmapro.2023.08.050
摘要

The performance of the machined surface is significantly affected by the machining-induced residual stress (Rs), which should be well predicted for better regulation. However, the real-time factors, such as positioning error, and installation error, will make the actual cutting parameters (ACP) deviated from the designed cutting parameters (DCP), and decrease the Rs prediction accuracy. Thus, this paper proposes a novel cutting parameter identification method to improve the prediction accuracy of five-axis machining-induced residual stress. Firstly, the cutting parameter (the cutting width is used in this paper) is identified inversely by the real-time cutting force, which provides input parameters for the accurate Rs prediction. Then, the mechanical stress and the thermal stress are recalculated by the identified cutting parameters to improve the prediction accuracy. Finally, the loading conditions are determined by considering the effects of cutter postures, and the Rs prediction model is established in five-axis milling. Based on the experimental validation, the identified cutting parameters (ICP) are more closely to ACP. For example, the mean error of the identified cutting depth decreases from 0.075 mm to 0.03 mm, and the error rates of simulated temperature rise are significantly reduced by 68.8 %. The Rs prediction error rate obtained by ICP significantly decreases by 48.1 %. The proposed method improves the Rs prediction precision by inversely identifying the cutting parameter with the real-time cutting force. It benefits real-time control of Rs for the better surface quality of machined parts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹅鹅鹅发布了新的文献求助10
刚刚
Solar_Parsifal完成签到,获得积分10
刚刚
Time完成签到,获得积分10
1秒前
甜甜的静柏完成签到 ,获得积分10
1秒前
羞涩的渊思应助XieQinxie采纳,获得10
1秒前
倩倩芊芊完成签到,获得积分10
1秒前
1秒前
lu应助风吹而过采纳,获得30
1秒前
吴建文发布了新的文献求助10
1秒前
牛牛完成签到,获得积分10
2秒前
风的味道完成签到,获得积分10
2秒前
wenjing完成签到,获得积分10
3秒前
pcb完成签到,获得积分10
3秒前
早起完成签到,获得积分10
3秒前
zxh完成签到,获得积分10
4秒前
葵小葵完成签到,获得积分10
4秒前
李建行完成签到,获得积分10
4秒前
柳沧海完成签到,获得积分10
5秒前
5秒前
奋斗灵竹完成签到,获得积分10
5秒前
格非完成签到,获得积分10
6秒前
xiaxue发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
tp040900发布了新的文献求助10
8秒前
冬凌草应助生菜采纳,获得20
9秒前
莫封叶完成签到,获得积分10
11秒前
john完成签到,获得积分10
11秒前
clocksoar完成签到,获得积分10
11秒前
11秒前
11秒前
ding应助慈祥的煎蛋采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
11秒前
HW完成签到 ,获得积分10
12秒前
yoyo完成签到 ,获得积分10
12秒前
zoe完成签到,获得积分10
12秒前
Tangyartie完成签到 ,获得积分10
12秒前
李佳慧完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259