Prediction of five-axis machining-induced residual stress based on cutting parameter identification

机械加工 残余应力 材料科学 残余物 均方预测误差 压力(语言学) 机械工程 计算机科学 复合材料 算法 冶金 工程类 语言学 哲学
作者
Zehua Wang,Sibao Wang,Shilong Wang,Zengya Zhao,Tao Yang,Zhenhua Su
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:103: 320-336 被引量:5
标识
DOI:10.1016/j.jmapro.2023.08.050
摘要

The performance of the machined surface is significantly affected by the machining-induced residual stress (Rs), which should be well predicted for better regulation. However, the real-time factors, such as positioning error, and installation error, will make the actual cutting parameters (ACP) deviated from the designed cutting parameters (DCP), and decrease the Rs prediction accuracy. Thus, this paper proposes a novel cutting parameter identification method to improve the prediction accuracy of five-axis machining-induced residual stress. Firstly, the cutting parameter (the cutting width is used in this paper) is identified inversely by the real-time cutting force, which provides input parameters for the accurate Rs prediction. Then, the mechanical stress and the thermal stress are recalculated by the identified cutting parameters to improve the prediction accuracy. Finally, the loading conditions are determined by considering the effects of cutter postures, and the Rs prediction model is established in five-axis milling. Based on the experimental validation, the identified cutting parameters (ICP) are more closely to ACP. For example, the mean error of the identified cutting depth decreases from 0.075 mm to 0.03 mm, and the error rates of simulated temperature rise are significantly reduced by 68.8 %. The Rs prediction error rate obtained by ICP significantly decreases by 48.1 %. The proposed method improves the Rs prediction precision by inversely identifying the cutting parameter with the real-time cutting force. It benefits real-time control of Rs for the better surface quality of machined parts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
tomorrow505应助小白采纳,获得10
3秒前
5秒前
lqlqhehehe发布了新的文献求助10
8秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
10秒前
cctv18应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
cctv18应助科研通管家采纳,获得10
10秒前
10秒前
cctv18应助科研通管家采纳,获得10
10秒前
Tina完成签到 ,获得积分10
11秒前
lyn完成签到,获得积分10
12秒前
Xccccc完成签到 ,获得积分10
12秒前
14秒前
orixero应助lqlqhehehe采纳,获得10
17秒前
李爱国应助zh采纳,获得30
18秒前
Cuz发布了新的文献求助10
18秒前
怀玉完成签到 ,获得积分10
18秒前
18秒前
所所应助单身的夜云采纳,获得10
21秒前
21秒前
22秒前
22秒前
香蕉觅云应助苏蛋蛋i采纳,获得10
23秒前
前进的光发布了新的文献求助10
23秒前
maox1aoxin应助Dr大壮采纳,获得30
24秒前
25秒前
25秒前
26秒前
LXOYL发布了新的文献求助10
27秒前
斯文败类应助半烟采纳,获得10
28秒前
陆冰之发布了新的文献求助10
28秒前
ZH发布了新的文献求助10
29秒前
上官若男应助尛瞐慶成采纳,获得10
29秒前
30秒前
灌肠高手发布了新的文献求助10
30秒前
来碗米饭发布了新的文献求助10
30秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596