An attention mechanism based deep nonlinear ensemble paradigm of strengthened feature extraction method for wind power prediction

布谷鸟搜索 风力发电 计算机科学 非线性系统 人工智能 算法 样本熵 风电预测 熵(时间箭头) 特征提取 希尔伯特-黄变换 模式识别(心理学) 滤波器(信号处理) 数据挖掘 电力系统 功率(物理) 工程类 粒子群优化 计算机视觉 物理 量子力学 电气工程
作者
Jujie Wang,Yafen Liu
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:15 (6)
标识
DOI:10.1063/5.0165151
摘要

The inherent uncertainty of wind power always hampers difficulties in the development of wind energy and the smooth operation of power systems. Therefore, reliable ultra-short-term wind power prediction is crucial for the development of wind energy. In this research, a two-stage nonlinear ensemble paradigm based on double-layer decomposition technology, feature reconstruction, intelligent optimization algorithm, and deep learning is suggested to increase the prediction accuracy of ultra-short-term wind power. First, using two different signal decomposition techniques for processing can further filter out noise in the original signal and fully capture different features within it. Second, the multiple components obtained through double decomposition are reconstructed using sample entropy theory and reassembled into several feature subsequences with similar complexity to simplify the input variables of the prediction model. Finally, based on the idea of a two-stage prediction strategy, the cuckoo search algorithm and the attention mechanism optimized long- and short-term memory model are applied to the prediction of feature subsequences and nonlinear integration, respectively, to obtain the final prediction results. Two sets of data from wind farms in Liaoning Province, China are used for simulation experiments. The final empirical findings indicate that, in comparison to other models, the suggested wind power prediction model has a greater prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助鲸鱼采纳,获得10
刚刚
1秒前
小方应助一块巧克力采纳,获得20
1秒前
1秒前
端庄的冰枫完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
Yzz发布了新的文献求助10
2秒前
WYS完成签到,获得积分20
2秒前
3秒前
酷波er应助小白采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
SciGPT应助明朗采纳,获得10
3秒前
5秒前
6秒前
Salut发布了新的文献求助10
6秒前
6秒前
零一完成签到,获得积分10
6秒前
中药中医科研狗1123完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
木鱼寒江发布了新的文献求助10
7秒前
7秒前
8秒前
WYS发布了新的文献求助10
9秒前
清爽伯云应助无奈的道天采纳,获得10
9秒前
putong完成签到,获得积分10
9秒前
echo完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
Jasper应助Brain采纳,获得10
10秒前
jianrobsim发布了新的文献求助10
11秒前
研友_赖冰凡完成签到,获得积分10
11秒前
一期一会发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917