Predicting stroke outcome: A case for multimodal deep learning methods with tabular and CT Perfusion data

冲程(发动机) 深度学习 医学 人工智能 灌注扫描 急性中风 模态(人机交互) 康复 机器学习 可用性 计算机科学 模式治疗法 物理医学与康复 放射科 灌注 物理疗法 内科学 组织纤溶酶原激活剂 机械工程 人机交互 工程类
作者
Balázs Borsos,Corinne G. Allaart,Aart van Halteren
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:147: 102719-102719 被引量:10
标识
DOI:10.1016/j.artmed.2023.102719
摘要

Acute ischemic stroke is one of the leading causes of morbidity and disability worldwide, often followed by a long rehabilitation period. To improve and personalize stroke rehabilitation, it is essential to provide a reliable prognosis to caregivers and patients. Deep learning techniques might improve the predictions by incorporating different data modalities. We present a multimodal approach to predict the functional status of acute ischemic stroke patients after their discharge based on tabular data and CT perfusion imaging. We conducted experiments on tabular, imaging, and multimodal deep learning architectures to predict dichotomized mRS scores 3 months after the event. The dataset was collected from a Dutch hospital and includes 98 CVA patients with a visible occlusion on their CT perfusion scan. Tabular data is based on the Dutch Acute Stroke Audit data, and imaging data consists of summed-up CT perfusion maps. On the tabular data, TabNet outperformed our baselines with an AUC of 0.71, while ResNet-10 on the imaging data performed comparably with an AUC of 0.70. Our implementation of the multimodal DAFT architecture outperforms baselines as well as comparable studies by achieving an 0.75 AUC, and 0.80 F1 score. This was achieved with a final model of less than a hundred thousand optimizable parameters, and a dataset less than half the size of reference papers. Overall, we demonstrate the feasibility of predicting the functional outcome for ischemic stroke patients and the usability of multimodal deep learning architectures for this purpose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
mfstone发布了新的文献求助10
1秒前
LiLi完成签到,获得积分10
2秒前
仁爱的老四完成签到 ,获得积分10
3秒前
李健的小迷弟应助学术z采纳,获得10
3秒前
科研通AI5应助归海紫翠采纳,获得30
4秒前
热情的初兰完成签到 ,获得积分10
5秒前
顺顺完成签到,获得积分10
5秒前
莫妮卡卡完成签到,获得积分10
5秒前
nbing完成签到,获得积分10
6秒前
SCI发布了新的文献求助50
6秒前
小猫多鱼完成签到,获得积分10
7秒前
7秒前
7秒前
默默尔烟发布了新的文献求助10
7秒前
7秒前
7秒前
宁静致远完成签到,获得积分10
7秒前
天天快乐应助内向秋寒采纳,获得10
10秒前
sfafasfsdf完成签到,获得积分10
10秒前
10秒前
luuuuuu发布了新的文献求助10
11秒前
lai发布了新的文献求助30
11秒前
11秒前
zrk发布了新的文献求助10
11秒前
11秒前
12秒前
ZJJ完成签到,获得积分10
12秒前
花开的声音1217完成签到,获得积分10
13秒前
古药完成签到,获得积分10
14秒前
赘婿应助烟雨行舟采纳,获得10
14秒前
seal发布了新的文献求助10
15秒前
15秒前
16秒前
不吃香菜发布了新的文献求助10
16秒前
RC_Wang应助ZJJ采纳,获得10
16秒前
Chridy发布了新的文献求助10
17秒前
17秒前
asipilin完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794