Predicting stroke outcome: A case for multimodal deep learning methods with tabular and CT Perfusion data

冲程(发动机) 深度学习 医学 人工智能 灌注扫描 急性中风 模态(人机交互) 康复 机器学习 可用性 计算机科学 模式治疗法 物理医学与康复 放射科 灌注 物理疗法 内科学 组织纤溶酶原激活剂 机械工程 人机交互 工程类
作者
Balázs Borsos,Corinne G. Allaart,Aart van Halteren
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:147: 102719-102719 被引量:14
标识
DOI:10.1016/j.artmed.2023.102719
摘要

Acute ischemic stroke is one of the leading causes of morbidity and disability worldwide, often followed by a long rehabilitation period. To improve and personalize stroke rehabilitation, it is essential to provide a reliable prognosis to caregivers and patients. Deep learning techniques might improve the predictions by incorporating different data modalities. We present a multimodal approach to predict the functional status of acute ischemic stroke patients after their discharge based on tabular data and CT perfusion imaging. We conducted experiments on tabular, imaging, and multimodal deep learning architectures to predict dichotomized mRS scores 3 months after the event. The dataset was collected from a Dutch hospital and includes 98 CVA patients with a visible occlusion on their CT perfusion scan. Tabular data is based on the Dutch Acute Stroke Audit data, and imaging data consists of summed-up CT perfusion maps. On the tabular data, TabNet outperformed our baselines with an AUC of 0.71, while ResNet-10 on the imaging data performed comparably with an AUC of 0.70. Our implementation of the multimodal DAFT architecture outperforms baselines as well as comparable studies by achieving an 0.75 AUC, and 0.80 F1 score. This was achieved with a final model of less than a hundred thousand optimizable parameters, and a dataset less than half the size of reference papers. Overall, we demonstrate the feasibility of predicting the functional outcome for ischemic stroke patients and the usability of multimodal deep learning architectures for this purpose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
you一发布了新的文献求助10
刚刚
super发布了新的文献求助30
1秒前
樱花树下发布了新的文献求助10
1秒前
1秒前
1秒前
斯文败类应助合适板栗采纳,获得10
1秒前
受伤的代珊完成签到,获得积分10
1秒前
呱呱发布了新的文献求助10
2秒前
田様应助坚强幼晴采纳,获得10
2秒前
keyantong完成签到,获得积分10
2秒前
4秒前
5秒前
5秒前
酷酷的冰真应助米娅采纳,获得20
6秒前
7秒前
黑妹完成签到,获得积分10
7秒前
wwwwc发布了新的文献求助10
8秒前
8秒前
577发布了新的文献求助10
8秒前
Charkey关注了科研通微信公众号
9秒前
9秒前
accept完成签到,获得积分10
9秒前
勤恳白山发布了新的文献求助100
10秒前
Loki完成签到,获得积分10
10秒前
Feng完成签到,获得积分10
10秒前
香蕉觅云应助杰克采纳,获得10
11秒前
11秒前
11秒前
Johnson完成签到 ,获得积分10
12秒前
学术嫪毐发布了新的文献求助10
12秒前
情怀应助Alibizia采纳,获得10
13秒前
13秒前
合适板栗完成签到,获得积分10
13秒前
zhy发布了新的文献求助10
13秒前
muyiyangdi应助577采纳,获得30
14秒前
April完成签到 ,获得积分10
14秒前
Yonina发布了新的文献求助10
14秒前
小胡同学完成签到,获得积分10
15秒前
充电宝应助TCB采纳,获得10
15秒前
合适板栗发布了新的文献求助10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961892
求助须知:如何正确求助?哪些是违规求助? 3508143
关于积分的说明 11139862
捐赠科研通 3240824
什么是DOI,文献DOI怎么找? 1791076
邀请新用户注册赠送积分活动 872725
科研通“疑难数据库(出版商)”最低求助积分说明 803344