Predicting stroke outcome: A case for multimodal deep learning methods with tabular and CT Perfusion data

冲程(发动机) 深度学习 医学 人工智能 灌注扫描 急性中风 模态(人机交互) 康复 机器学习 可用性 计算机科学 模式治疗法 物理医学与康复 放射科 灌注 物理疗法 内科学 组织纤溶酶原激活剂 工程类 人机交互 机械工程
作者
Balázs Borsos,Corinne G. Allaart,Aart van Halteren
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:147: 102719-102719 被引量:14
标识
DOI:10.1016/j.artmed.2023.102719
摘要

Acute ischemic stroke is one of the leading causes of morbidity and disability worldwide, often followed by a long rehabilitation period. To improve and personalize stroke rehabilitation, it is essential to provide a reliable prognosis to caregivers and patients. Deep learning techniques might improve the predictions by incorporating different data modalities. We present a multimodal approach to predict the functional status of acute ischemic stroke patients after their discharge based on tabular data and CT perfusion imaging. We conducted experiments on tabular, imaging, and multimodal deep learning architectures to predict dichotomized mRS scores 3 months after the event. The dataset was collected from a Dutch hospital and includes 98 CVA patients with a visible occlusion on their CT perfusion scan. Tabular data is based on the Dutch Acute Stroke Audit data, and imaging data consists of summed-up CT perfusion maps. On the tabular data, TabNet outperformed our baselines with an AUC of 0.71, while ResNet-10 on the imaging data performed comparably with an AUC of 0.70. Our implementation of the multimodal DAFT architecture outperforms baselines as well as comparable studies by achieving an 0.75 AUC, and 0.80 F1 score. This was achieved with a final model of less than a hundred thousand optimizable parameters, and a dataset less than half the size of reference papers. Overall, we demonstrate the feasibility of predicting the functional outcome for ischemic stroke patients and the usability of multimodal deep learning architectures for this purpose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
jeff完成签到,获得积分10
3秒前
59关闭了59文献求助
3秒前
可耐的嫣娆完成签到,获得积分10
7秒前
无花果应助hzz采纳,获得10
7秒前
音悦台发布了新的文献求助30
8秒前
11秒前
threewei完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
清欢完成签到 ,获得积分10
13秒前
14秒前
xixun关注了科研通微信公众号
14秒前
15秒前
15秒前
解语花发布了新的文献求助50
16秒前
啊啊啊完成签到,获得积分10
17秒前
小琛完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
21秒前
21秒前
36038138完成签到 ,获得积分10
23秒前
XRenaissance发布了新的文献求助10
24秒前
搬砖发布了新的文献求助10
25秒前
25秒前
酱紫完成签到 ,获得积分10
25秒前
淡定妙海发布了新的文献求助10
25秒前
NexusExplorer应助盖世汤圆采纳,获得20
26秒前
26秒前
Azyyyy完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助30
27秒前
27秒前
陈昇发布了新的文献求助10
27秒前
cccf发布了新的文献求助100
28秒前
29秒前
冯俊驰发布了新的文献求助10
30秒前
海马成长痛完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408