MM-FGRM: Fine-Grained Respiratory Monitoring Using MIMO Millimeter Wave Radar

呼吸监测 雷达 计算机科学 波形 人工智能 呼吸系统 实时计算 电子工程 电信 工程类 医学 内科学
作者
Shuxuan Wang,Chong Han,Jian Guo,Lijuan Sun
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13 被引量:1
标识
DOI:10.1109/tim.2023.3334353
摘要

Long-term respiratory monitoring plays an extremely important role in the diagnosis of respiratory system-related diseases. It can detect diseases temporally and improve the effectiveness of treatment, which is crucial for home health monitoring. With the rapid development of radar chip technology, noncontact respiratory monitoring based on commercial millimeter-wave radar sensors has received increasing attention. However, traditional signal processing methods are difficult to extract fine respiratory waveforms from radar signals mixed with human body movements. Fortunately, deep learning provides a solution, as we can use its powerful learning ability to learn a mapping from radar signals to real respiratory waveforms. With this method, we can directly observe fine-grained respiratory waveforms and further improve the accuracy of respiratory rate detection. Therefore, we propose MM-FGRM, a respiratory monitoring system based on a commercial 77 GHz multiple input multiple output (MIMO) radar. The core of this system is a deep learning-based network called IQ-Transformer with a self-attention mechanism that aims at capturing the latent respiratory-related features from I/Q components of radar signals directly in each human body region of interest (ROI) and recovering the respiratory waveforms. We collected 12 h of data from eight subjects and conducted experiments. The experimental results show that MM-FGRM can accurately recover respiratory waveforms and provide accurate respiratory rates. In addition, we perform testing on data from two other users who do not participate in the training, and the results verify that MM-FGRM has a strong generalization ability. Our results demonstrate the feasibility of further development of home respiratory monitoring products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SiDi发布了新的文献求助10
2秒前
4秒前
4秒前
英俊的铭应助SiDi采纳,获得10
5秒前
5秒前
小旭vip完成签到 ,获得积分10
7秒前
frl发布了新的文献求助10
8秒前
jtyuan发布了新的文献求助10
8秒前
热心市民小红花应助朝颜采纳,获得10
8秒前
FashionBoy应助朝颜采纳,获得10
9秒前
十一发布了新的文献求助10
9秒前
9秒前
qcf完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
万能图书馆应助SaiKeery采纳,获得10
9秒前
2024020847完成签到,获得积分10
10秒前
hob发布了新的文献求助10
12秒前
或无情完成签到 ,获得积分10
12秒前
思源应助hyc采纳,获得10
12秒前
liangye2222发布了新的文献求助10
13秒前
14秒前
小豆芽发布了新的文献求助10
14秒前
15秒前
@@@发布了新的文献求助10
15秒前
16秒前
水流众生发布了新的文献求助10
16秒前
17秒前
重要元容发布了新的文献求助10
18秒前
快乐顽童完成签到,获得积分10
18秒前
十一完成签到,获得积分20
19秒前
19秒前
hob完成签到,获得积分10
20秒前
优雅的沛春完成签到 ,获得积分10
21秒前
三金完成签到,获得积分10
21秒前
司空元正发布了新的文献求助10
21秒前
Lycerdoctor发布了新的文献求助10
21秒前
23秒前
欣欣子完成签到 ,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068