MM-FGRM: Fine-Grained Respiratory Monitoring Using MIMO Millimeter Wave Radar

呼吸监测 雷达 计算机科学 波形 人工智能 呼吸系统 实时计算 电子工程 电信 工程类 医学 内科学
作者
Shuxuan Wang,Chong Han,Jian Guo,Lijuan Sun
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13 被引量:1
标识
DOI:10.1109/tim.2023.3334353
摘要

Long-term respiratory monitoring plays an extremely important role in the diagnosis of respiratory system-related diseases. It can detect diseases temporally and improve the effectiveness of treatment, which is crucial for home health monitoring. With the rapid development of radar chip technology, noncontact respiratory monitoring based on commercial millimeter-wave radar sensors has received increasing attention. However, traditional signal processing methods are difficult to extract fine respiratory waveforms from radar signals mixed with human body movements. Fortunately, deep learning provides a solution, as we can use its powerful learning ability to learn a mapping from radar signals to real respiratory waveforms. With this method, we can directly observe fine-grained respiratory waveforms and further improve the accuracy of respiratory rate detection. Therefore, we propose MM-FGRM, a respiratory monitoring system based on a commercial 77 GHz multiple input multiple output (MIMO) radar. The core of this system is a deep learning-based network called IQ-Transformer with a self-attention mechanism that aims at capturing the latent respiratory-related features from I/Q components of radar signals directly in each human body region of interest (ROI) and recovering the respiratory waveforms. We collected 12 h of data from eight subjects and conducted experiments. The experimental results show that MM-FGRM can accurately recover respiratory waveforms and provide accurate respiratory rates. In addition, we perform testing on data from two other users who do not participate in the training, and the results verify that MM-FGRM has a strong generalization ability. Our results demonstrate the feasibility of further development of home respiratory monitoring products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助hobowei采纳,获得10
2秒前
可爱奇异果完成签到 ,获得积分10
2秒前
wang发布了新的文献求助10
3秒前
太空人完成签到,获得积分10
3秒前
123发布了新的文献求助10
4秒前
5秒前
该睡觉啦完成签到,获得积分20
5秒前
5秒前
莫x莫完成签到 ,获得积分10
7秒前
loewy完成签到,获得积分10
7秒前
黄婷发布了新的文献求助10
7秒前
7秒前
yuan完成签到,获得积分10
7秒前
zho发布了新的文献求助10
7秒前
7秒前
苏苏完成签到,获得积分10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得80
8秒前
Hello应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
万能图书馆应助内向秋寒采纳,获得10
8秒前
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
zzzq应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得30
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
soso应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794