光电阴极
光电子学
材料科学
阴极
电池(电)
电极
带隙
热的
吸收(声学)
辐照
化学
物理
电子
功率(物理)
物理化学
量子力学
气象学
核物理学
复合材料
作者
Arvind Pujari,Byung‐Man Kim,Farheen N. Sayed,Kate Sanders,Wesley M. Dose,Angus Mathieson,Clare P. Grey,Neil C. Greenham,Michaël De Volder
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2023-10-12
卷期号:8 (11): 4625-4633
被引量:10
标识
DOI:10.1021/acsenergylett.3c01627
摘要
Light-rechargeable photobatteries have emerged as an elegant solution to address the intermittency of solar irradiation by harvesting and storing solar energy directly through a battery electrode. Recently, a number of compact two-electrode photobatteries have been proposed, showing increases in capacity and open-circuit voltage upon illumination. Here, we analyze the thermal contributions to this increase in capacity under galvanostatic and photocharging conditions in two promising photoactive cathode materials, V2O5 and LiMn2O4. We propose an improved cell and experimental design and perform temperature-controlled photoelectrochemical measurements using these materials as photocathodes. We show that the photoenhanced capacities of these materials under 1 sun irradiation can be attributed mostly to thermal effects. Using operando reflection spectroscopy, we show that the spectral behavior of the photocathode changes as a function of the state of charge, resulting in changing optical absorption properties. Through this technique, we show that the band gap of V2O5 vanishes after continued zinc ion intercalation, making it unsuitable as a photocathode beyond a certain discharge voltage. These results and experimental techniques will enable the rational selection and testing of materials for next-generation photo-rechargeable systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI