已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A multiscale residual U-net architecture for super-resolution ultrasonic phased array imaging from full matrix capture data

相控阵 计算机科学 波束赋形 残余物 超声波传感器 图像分辨率 人工智能 声学 噪音(视频) 自编码 算法 计算机视觉 人工神经网络 物理 电信 图像(数学) 天线(收音机)
作者
Lishuai Liu,Wen Liu,Da Teng,Yanxun Xiang,Fu‐Zhen Xuan
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:154 (4): 2044-2054 被引量:2
标识
DOI:10.1121/10.0021171
摘要

Ultrasonic phased array imaging using full-matrix capture (FMC) has raised great interest among various communities, including the nondestructive testing community, as it makes full use of the echo space to provide preferable visualization performance of inhomogeneities. The conventional way of FMC data postprocessing for imaging is through beamforming approaches, such as delay-and-sum, which suffers from limited imaging resolution and contrast-to-noise ratio. To tackle these difficulties, we propose a deep learning (DL)-based image forming approach, termed FMC-Net, to reconstruct high-quality ultrasonic images directly from FMC data. Benefitting from the remarkable capability of DL to approximate nonlinear mapping, the developed FMC-Net automatically models the underlying nonlinear wave-matter interactions; thus, it is trained end-to-end to link the FMC data to the spatial distribution of the acoustic scattering coefficient of the inspected object. Specifically, the FMC-Net is an encoder-decoder architecture composed of multiscale residual modules that make local perception at different scales for the transmitter-receiver pair combinations in the FMC data. We numerically and experimentally compared the DL imaging results to the total focusing method and wavenumber algorithm and demonstrated that the proposed FMC-Net remarkably outperforms conventional methods in terms of exceeding resolution limit and visualizing subwavelength defects. It is expected that the proposed DL approach can benefit a variety of ultrasonic array imaging applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
woollen2022发布了新的文献求助10
4秒前
6秒前
成阳发布了新的文献求助10
8秒前
没有昵称完成签到,获得积分20
8秒前
芒果好高完成签到,获得积分10
11秒前
VERRICKT完成签到,获得积分10
11秒前
WX2023发布了新的文献求助10
13秒前
14秒前
陈媛完成签到,获得积分20
15秒前
嘿嘿完成签到 ,获得积分10
17秒前
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
贰鸟应助科研通管家采纳,获得20
18秒前
脑洞疼应助科研通管家采纳,获得30
18秒前
19秒前
19秒前
19秒前
嘿嘿关注了科研通微信公众号
20秒前
lxxx发布了新的文献求助10
20秒前
库里强发布了新的文献求助10
21秒前
学业顺利完成签到,获得积分10
21秒前
21秒前
22秒前
skyer1发布了新的文献求助10
22秒前
羊可发布了新的文献求助10
23秒前
24秒前
谨慎的宝贝完成签到,获得积分10
24秒前
阿kkk发布了新的文献求助10
25秒前
han发布了新的文献求助10
27秒前
27秒前
完美世界应助库里强采纳,获得10
28秒前
yydragen应助ba采纳,获得30
30秒前
桐桐应助李李05采纳,获得10
32秒前
FashionBoy应助阿kkk采纳,获得10
33秒前
34秒前
KD发布了新的文献求助10
34秒前
Hello应助skyer1采纳,获得10
35秒前
35秒前
睿智鱼仔完成签到 ,获得积分10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953276
求助须知:如何正确求助?哪些是违规求助? 3498602
关于积分的说明 11092546
捐赠科研通 3229175
什么是DOI,文献DOI怎么找? 1785223
邀请新用户注册赠送积分活动 869318
科研通“疑难数据库(出版商)”最低求助积分说明 801415