Boosting redox kinetics using rationally engineered cathodic interlayers comprising porous rGO–CNT framework microspheres with NiSe2-core@N-doped graphitic carbon shell nanocrystals for stable Li–S batteries

材料科学 化学工程 石墨烯 纳米技术 电解质 纳米晶 纳米结构 氧化物 电极 化学 物理化学 工程类 冶金
作者
Rakesh Saroha,Hyun Ho Choi,Jung Sang Cho
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:473: 145391-145391 被引量:11
标识
DOI:10.1016/j.cej.2023.145391
摘要

Here, we propose the synthesis of a three-dimensional (3D) nanostructure comprising NiSe2-core@N–doped graphitic carbon (NGC) shell nanocrystals securely implanted within a highly conductive and porous reduced graphene oxide–carbon nanotube (rGO–CNT) framework (3D P-NiSe2@NGC/rGO–CNT), using spray pyrolysis technique followed by selenization and utilized as multifunctional cathodic interlayers in lithium–sulfur (Li–S) cells. The uniformly distributed arrays of macropores (ϕ = 100 nm) were formed by thermal decomposition of polystyrene nanobeads (ϕ = 200 nm). The porous structure shortens the charge diffusion length, allowing rapid charge transport and efficient electrolyte percolation besides accommodating unwanted volume perturbations. The NGC shell surrounding the NiSe2 nanocrystals acted as the primary conduction conduit for electron transport, while the self-supporting rGO–CNT framework served as a secondary pathway for consecutive electron transfer besides enhancing the structural robustness. Further, the polar NiSe2 nanocrystals offered numerous chemisorption sites for effectively capturing polysulfides, thus minimizing the shuttling effect and increasing active material utilization. The Li–S cell exhibited improved rate performance (till 4.0C) and excellent cycling stability (1000cycles at 2.0C, average capacity decay rate of 0.04% per cycle). Even at severe cell parameters (effective S content = 74%, S loading = 4.5 mg cm−2, and electrolyte/sulfur = 5.7 µL mg−1), the cells delivered a stable rate performance and long-term cycling (400cycles at 0.1C, average decay rate of 0.10% per cycle). We believe the nanostructure design strategy that we developed for this study could spur the development of more enduring and practical Li–S battery technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
格兰兔米兔完成签到,获得积分10
刚刚
刚刚
刚刚
Luna完成签到 ,获得积分10
1秒前
汪鸡毛发布了新的文献求助10
1秒前
积极寻梅发布了新的文献求助10
2秒前
2秒前
tu发布了新的文献求助30
3秒前
在水一方应助云_123采纳,获得10
3秒前
科研小民工应助晚安采纳,获得50
3秒前
木木完成签到,获得积分10
3秒前
4秒前
4秒前
晨安完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
爆米花应助特兰克斯采纳,获得10
6秒前
7秒前
8秒前
8秒前
9秒前
葛辉辉发布了新的文献求助10
9秒前
9秒前
共享精神应助baobaonaixi采纳,获得10
9秒前
半颗橙子发布了新的文献求助10
9秒前
10秒前
shimmery完成签到,获得积分10
11秒前
咔咔完成签到 ,获得积分20
11秒前
superworm1发布了新的文献求助10
11秒前
11秒前
hy发布了新的文献求助10
11秒前
舒心赛凤完成签到,获得积分10
11秒前
菠菜菜str完成签到,获得积分10
13秒前
悟空发布了新的文献求助10
13秒前
优雅山柏发布了新的文献求助10
13秒前
13秒前
junc发布了新的文献求助20
13秒前
memory发布了新的文献求助10
13秒前
罗曼长情雪兰完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762