Boosting redox kinetics using rationally engineered cathodic interlayers comprising porous rGO–CNT framework microspheres with NiSe2-core@N-doped graphitic carbon shell nanocrystals for stable Li–S batteries

材料科学 化学工程 石墨烯 纳米技术 电解质 纳米晶 纳米结构 氧化物 电极 化学 工程类 物理化学 冶金
作者
Rakesh Saroha,Hyun Ho Choi,Jung Sang Cho
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:473: 145391-145391 被引量:11
标识
DOI:10.1016/j.cej.2023.145391
摘要

Here, we propose the synthesis of a three-dimensional (3D) nanostructure comprising NiSe2-core@N–doped graphitic carbon (NGC) shell nanocrystals securely implanted within a highly conductive and porous reduced graphene oxide–carbon nanotube (rGO–CNT) framework (3D P-NiSe2@NGC/rGO–CNT), using spray pyrolysis technique followed by selenization and utilized as multifunctional cathodic interlayers in lithium–sulfur (Li–S) cells. The uniformly distributed arrays of macropores (ϕ = 100 nm) were formed by thermal decomposition of polystyrene nanobeads (ϕ = 200 nm). The porous structure shortens the charge diffusion length, allowing rapid charge transport and efficient electrolyte percolation besides accommodating unwanted volume perturbations. The NGC shell surrounding the NiSe2 nanocrystals acted as the primary conduction conduit for electron transport, while the self-supporting rGO–CNT framework served as a secondary pathway for consecutive electron transfer besides enhancing the structural robustness. Further, the polar NiSe2 nanocrystals offered numerous chemisorption sites for effectively capturing polysulfides, thus minimizing the shuttling effect and increasing active material utilization. The Li–S cell exhibited improved rate performance (till 4.0C) and excellent cycling stability (1000cycles at 2.0C, average capacity decay rate of 0.04% per cycle). Even at severe cell parameters (effective S content = 74%, S loading = 4.5 mg cm−2, and electrolyte/sulfur = 5.7 µL mg−1), the cells delivered a stable rate performance and long-term cycling (400cycles at 0.1C, average decay rate of 0.10% per cycle). We believe the nanostructure design strategy that we developed for this study could spur the development of more enduring and practical Li–S battery technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LGH发布了新的文献求助10
刚刚
mingming发布了新的文献求助10
1秒前
读者发布了新的文献求助10
1秒前
jackgu发布了新的文献求助10
2秒前
2秒前
伏波完成签到,获得积分0
2秒前
2秒前
huazhangchina发布了新的文献求助10
2秒前
橘子完成签到,获得积分10
4秒前
帅的一批发布了新的文献求助10
4秒前
shweah2003完成签到,获得积分0
4秒前
顾矜应助猫科动物采纳,获得10
4秒前
丘比特应助siestaMiao采纳,获得10
4秒前
5秒前
香精发布了新的文献求助10
5秒前
Jasper应助hu采纳,获得10
5秒前
CodeCraft应助依古比古采纳,获得10
6秒前
领导范儿应助蒸馒头争气采纳,获得10
6秒前
派大星完成签到 ,获得积分10
6秒前
golf完成签到,获得积分10
7秒前
聪慧芷巧应助SmileLin采纳,获得10
8秒前
8秒前
魔幻秋烟完成签到 ,获得积分10
9秒前
9秒前
9秒前
所所应助MoriZhang采纳,获得10
10秒前
汉堡包应助111采纳,获得10
10秒前
11秒前
大魁发布了新的文献求助10
11秒前
12秒前
13秒前
NexusExplorer应助echo采纳,获得10
13秒前
读者完成签到,获得积分10
13秒前
丘比特应助刘安娜采纳,获得10
13秒前
13秒前
lijing123发布了新的文献求助10
13秒前
14秒前
14秒前
小管完成签到,获得积分10
14秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198