亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Boosting redox kinetics using rationally engineered cathodic interlayers comprising porous rGO–CNT framework microspheres with NiSe2-core@N-doped graphitic carbon shell nanocrystals for stable Li–S batteries

材料科学 化学工程 石墨烯 纳米技术 电解质 纳米晶 纳米结构 氧化物 电极 化学 工程类 物理化学 冶金
作者
Rakesh Saroha,Hyun Ho Choi,Jung Sang Cho
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:473: 145391-145391 被引量:15
标识
DOI:10.1016/j.cej.2023.145391
摘要

Here, we propose the synthesis of a three-dimensional (3D) nanostructure comprising NiSe2-core@N–doped graphitic carbon (NGC) shell nanocrystals securely implanted within a highly conductive and porous reduced graphene oxide–carbon nanotube (rGO–CNT) framework (3D P-NiSe2@NGC/rGO–CNT), using spray pyrolysis technique followed by selenization and utilized as multifunctional cathodic interlayers in lithium–sulfur (Li–S) cells. The uniformly distributed arrays of macropores (ϕ = 100 nm) were formed by thermal decomposition of polystyrene nanobeads (ϕ = 200 nm). The porous structure shortens the charge diffusion length, allowing rapid charge transport and efficient electrolyte percolation besides accommodating unwanted volume perturbations. The NGC shell surrounding the NiSe2 nanocrystals acted as the primary conduction conduit for electron transport, while the self-supporting rGO–CNT framework served as a secondary pathway for consecutive electron transfer besides enhancing the structural robustness. Further, the polar NiSe2 nanocrystals offered numerous chemisorption sites for effectively capturing polysulfides, thus minimizing the shuttling effect and increasing active material utilization. The Li–S cell exhibited improved rate performance (till 4.0C) and excellent cycling stability (1000cycles at 2.0C, average capacity decay rate of 0.04% per cycle). Even at severe cell parameters (effective S content = 74%, S loading = 4.5 mg cm−2, and electrolyte/sulfur = 5.7 µL mg−1), the cells delivered a stable rate performance and long-term cycling (400cycles at 0.1C, average decay rate of 0.10% per cycle). We believe the nanostructure design strategy that we developed for this study could spur the development of more enduring and practical Li–S battery technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
李健应助堕落的飞猪采纳,获得10
17秒前
19秒前
pure123完成签到,获得积分10
19秒前
wenliu完成签到,获得积分10
19秒前
普通用户30号完成签到 ,获得积分10
21秒前
wenliu发布了新的文献求助10
22秒前
24秒前
38秒前
44秒前
54秒前
55秒前
56秒前
dtsgydbd发布了新的文献求助10
59秒前
饼子发布了新的文献求助10
1分钟前
唐泽雪穗发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
wrl2023完成签到,获得积分10
1分钟前
魏佳奇发布了新的文献求助10
1分钟前
赘婿应助dtsgydbd采纳,获得10
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
GingerF应助科研通管家采纳,获得60
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
tuanheqi应助科研通管家采纳,获得150
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
cc完成签到,获得积分10
1分钟前
334niubi666完成签到 ,获得积分10
1分钟前
丘比特应助魏佳奇采纳,获得10
1分钟前
1分钟前
2分钟前
Nancy0818完成签到 ,获得积分10
2分钟前
脑洞疼应助槑槑采纳,获得10
2分钟前
2分钟前
下文献的蜉蝣完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186254
求助须知:如何正确求助?哪些是违规求助? 4371519
关于积分的说明 13612286
捐赠科研通 4223980
什么是DOI,文献DOI怎么找? 2316753
邀请新用户注册赠送积分活动 1315380
关于科研通互助平台的介绍 1264495