Basic behavior recognition of yaks based on improved SlowFast network

牦牛 计算机科学 模式识别(心理学) 特征(语言学) 人工智能 生物 动物科学 语言学 哲学
作者
Gang Sun,Tonghai Liu,Hang Zhang,Bowen Tan,Yuwei Li
出处
期刊:Ecological Informatics [Elsevier]
卷期号:78: 102313-102313 被引量:12
标识
DOI:10.1016/j.ecoinf.2023.102313
摘要

The yak is a symbol of the Tibetan Plateau and an indispensable livestock resource at high altitudes, with important ecological, economic, and cultural values. When yaks are sick, their excrement can cause serious damage to the highland ecosystem, so real-time monitoring of their health status is essential for ecological conservation. The daily behaviors of yaks, such as eating, lying, standing, and walking, contains a wealth of health information. By recognizing the behavior of yaks using computer vision technology, real-time monitoring of yak health status can be achieved, thus, effectively protecting the ecological environment while maintaining the economic benefits of yak breeding. This study proposes a non-contact yak behavior recognition method based on the SlowFast model. The method uses two paths with different sampling rates (i.e., Slow and Fast) to extract spatial and action features from the input video. The 3D Resnet50 network is selected as the backbone network of the SlowFast dual path after comparative analysis. The size of the 3D convolutional kernel is increased to improve the perceptual field of feature extraction, which in turn effectively improves the recognition accuracy of the algorithm. A total of 318 videos of yaks in different scenes and poses were captured for testing. Six different networks were selected to verify the performance of the proposed method: SlowFast-3DResnet50, SlowFast-3DResnet101, SlowFast-3DResnet152, 3DResnet50, C3D, and I3D. The experimental results show that the method achieves 96.6% recognition accuracy, 91.3% recall, and 90.5% precision in classifying the basic behaviors of yaks in natural scenes, and 97.3%, 99.1%, 95.9% and 94.1% for the four basic behaviors, respectively. These results are comprehensively better than the other six methods. In addition, compared with other 3D convolutional neural networks used for video classification, the method proposed in this paper can classify the target behavior from each video frame, which has a broader implications and application. The algorithm meets the needs for basic behavior recognition of yaks and lays the foundation for real-time monitoring of yak health status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
念y完成签到 ,获得积分10
3秒前
3秒前
6秒前
香蕉觅云应助11111采纳,获得10
7秒前
7秒前
8秒前
鹊起发布了新的文献求助10
8秒前
谢桓完成签到 ,获得积分10
8秒前
9秒前
9秒前
嘿嘿发布了新的文献求助10
9秒前
9秒前
10秒前
xiaoxu发布了新的文献求助10
11秒前
结实梦琪发布了新的文献求助10
12秒前
12秒前
scuter发布了新的文献求助20
13秒前
lbx发布了新的文献求助10
13秒前
火火完成签到 ,获得积分10
13秒前
现代的雪糕完成签到,获得积分10
14秒前
猛发sci完成签到,获得积分10
14秒前
mcsmdxs发布了新的文献求助10
14秒前
ww应助壮观砖家采纳,获得20
15秒前
陈佳利发布了新的文献求助30
15秒前
小杨完成签到,获得积分20
16秒前
16秒前
大力麦片完成签到,获得积分10
16秒前
我是老大应助关乔采纳,获得10
16秒前
Hu发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
善学以致用应助夹心饼干采纳,获得30
18秒前
聪明的念芹完成签到,获得积分20
19秒前
20秒前
Charlene完成签到,获得积分10
21秒前
mumu完成签到,获得积分10
21秒前
21秒前
墨尘发布了新的文献求助30
21秒前
完美世界应助hxx采纳,获得10
21秒前
李爱国应助hxx采纳,获得30
22秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620818
求助须知:如何正确求助?哪些是违规求助? 4705416
关于积分的说明 14931932
捐赠科研通 4763450
什么是DOI,文献DOI怎么找? 2551239
邀请新用户注册赠送积分活动 1513799
关于科研通互助平台的介绍 1474704