Basic behavior recognition of yaks based on improved SlowFast network

牦牛 计算机科学 模式识别(心理学) 特征(语言学) 人工智能 生物 动物科学 语言学 哲学
作者
Gang Sun,Tonghai Liu,Hang Zhang,Bowen Tan,Yuwei Li
出处
期刊:Ecological Informatics [Elsevier]
卷期号:78: 102313-102313 被引量:12
标识
DOI:10.1016/j.ecoinf.2023.102313
摘要

The yak is a symbol of the Tibetan Plateau and an indispensable livestock resource at high altitudes, with important ecological, economic, and cultural values. When yaks are sick, their excrement can cause serious damage to the highland ecosystem, so real-time monitoring of their health status is essential for ecological conservation. The daily behaviors of yaks, such as eating, lying, standing, and walking, contains a wealth of health information. By recognizing the behavior of yaks using computer vision technology, real-time monitoring of yak health status can be achieved, thus, effectively protecting the ecological environment while maintaining the economic benefits of yak breeding. This study proposes a non-contact yak behavior recognition method based on the SlowFast model. The method uses two paths with different sampling rates (i.e., Slow and Fast) to extract spatial and action features from the input video. The 3D Resnet50 network is selected as the backbone network of the SlowFast dual path after comparative analysis. The size of the 3D convolutional kernel is increased to improve the perceptual field of feature extraction, which in turn effectively improves the recognition accuracy of the algorithm. A total of 318 videos of yaks in different scenes and poses were captured for testing. Six different networks were selected to verify the performance of the proposed method: SlowFast-3DResnet50, SlowFast-3DResnet101, SlowFast-3DResnet152, 3DResnet50, C3D, and I3D. The experimental results show that the method achieves 96.6% recognition accuracy, 91.3% recall, and 90.5% precision in classifying the basic behaviors of yaks in natural scenes, and 97.3%, 99.1%, 95.9% and 94.1% for the four basic behaviors, respectively. These results are comprehensively better than the other six methods. In addition, compared with other 3D convolutional neural networks used for video classification, the method proposed in this paper can classify the target behavior from each video frame, which has a broader implications and application. The algorithm meets the needs for basic behavior recognition of yaks and lays the foundation for real-time monitoring of yak health status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高志远完成签到,获得积分20
刚刚
亮仔发布了新的文献求助10
1秒前
1秒前
青春奇谈发布了新的文献求助10
2秒前
今后应助干净的时光采纳,获得10
2秒前
兔兔发布了新的文献求助10
2秒前
3秒前
yimeng驳回了yyy应助
3秒前
阿燕发布了新的文献求助10
3秒前
香蕉觅云应助bab采纳,获得10
3秒前
灵运完成签到,获得积分10
4秒前
如意的尔蝶完成签到,获得积分10
4秒前
songf11发布了新的文献求助10
4秒前
zh发布了新的文献求助10
4秒前
Jasper应助asd0817采纳,获得10
5秒前
6秒前
青春奇谈完成签到,获得积分10
7秒前
7秒前
科研通AI6应助高志远采纳,获得10
7秒前
8秒前
8秒前
cwnboy2008完成签到,获得积分10
8秒前
9秒前
Flex完成签到,获得积分10
9秒前
9秒前
9秒前
bkagyin应助zh采纳,获得10
10秒前
踏实豪英发布了新的文献求助10
10秒前
春困秋乏完成签到,获得积分10
10秒前
kbc发布了新的文献求助10
10秒前
共享精神应助zheweitang采纳,获得10
11秒前
英俊的铭应助Ashe采纳,获得10
11秒前
12秒前
jianyulv发布了新的文献求助10
12秒前
13秒前
天天快乐应助机灵冥采纳,获得10
13秒前
13秒前
阔达的乘云完成签到 ,获得积分20
13秒前
量子星尘发布了新的文献求助10
13秒前
烟花应助甜甜醉香采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551649
求助须知:如何正确求助?哪些是违规求助? 4636518
关于积分的说明 14644292
捐赠科研通 4578369
什么是DOI,文献DOI怎么找? 2510780
邀请新用户注册赠送积分活动 1486083
关于科研通互助平台的介绍 1457449