Basic behavior recognition of yaks based on improved SlowFast network

牦牛 计算机科学 模式识别(心理学) 特征(语言学) 人工智能 生物 动物科学 语言学 哲学
作者
Gang Sun,Tonghai Liu,Hang Zhang,Bowen Tan,Yuwei Li
出处
期刊:Ecological Informatics [Elsevier]
卷期号:78: 102313-102313 被引量:12
标识
DOI:10.1016/j.ecoinf.2023.102313
摘要

The yak is a symbol of the Tibetan Plateau and an indispensable livestock resource at high altitudes, with important ecological, economic, and cultural values. When yaks are sick, their excrement can cause serious damage to the highland ecosystem, so real-time monitoring of their health status is essential for ecological conservation. The daily behaviors of yaks, such as eating, lying, standing, and walking, contains a wealth of health information. By recognizing the behavior of yaks using computer vision technology, real-time monitoring of yak health status can be achieved, thus, effectively protecting the ecological environment while maintaining the economic benefits of yak breeding. This study proposes a non-contact yak behavior recognition method based on the SlowFast model. The method uses two paths with different sampling rates (i.e., Slow and Fast) to extract spatial and action features from the input video. The 3D Resnet50 network is selected as the backbone network of the SlowFast dual path after comparative analysis. The size of the 3D convolutional kernel is increased to improve the perceptual field of feature extraction, which in turn effectively improves the recognition accuracy of the algorithm. A total of 318 videos of yaks in different scenes and poses were captured for testing. Six different networks were selected to verify the performance of the proposed method: SlowFast-3DResnet50, SlowFast-3DResnet101, SlowFast-3DResnet152, 3DResnet50, C3D, and I3D. The experimental results show that the method achieves 96.6% recognition accuracy, 91.3% recall, and 90.5% precision in classifying the basic behaviors of yaks in natural scenes, and 97.3%, 99.1%, 95.9% and 94.1% for the four basic behaviors, respectively. These results are comprehensively better than the other six methods. In addition, compared with other 3D convolutional neural networks used for video classification, the method proposed in this paper can classify the target behavior from each video frame, which has a broader implications and application. The algorithm meets the needs for basic behavior recognition of yaks and lays the foundation for real-time monitoring of yak health status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
烟花应助YJ采纳,获得10
1秒前
gsd发布了新的文献求助10
1秒前
cai关闭了cai文献求助
1秒前
嘟嘟完成签到,获得积分10
2秒前
2秒前
大力帽子应助zyyyyyyyy采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
comm发布了新的文献求助10
3秒前
3秒前
西西发布了新的文献求助10
4秒前
4秒前
爆米花应助杜ss采纳,获得10
4秒前
复杂雪一完成签到,获得积分10
4秒前
枫1完成签到,获得积分10
4秒前
eee发布了新的文献求助10
5秒前
难过的翎应助滴答采纳,获得10
5秒前
FashionBoy应助滴答采纳,获得30
5秒前
充电宝应助威武不言采纳,获得10
5秒前
元正完成签到,获得积分10
5秒前
6秒前
cct发布了新的文献求助20
6秒前
在水一方应助忧心的洙采纳,获得10
6秒前
木子汐完成签到,获得积分10
6秒前
7秒前
7秒前
竹纤维完成签到 ,获得积分10
7秒前
满意的天完成签到 ,获得积分10
8秒前
元正发布了新的文献求助10
8秒前
陈cc发布了新的文献求助10
9秒前
姜夔完成签到,获得积分10
9秒前
万物春完成签到,获得积分10
9秒前
李爱国应助卷儿w采纳,获得30
9秒前
9秒前
慕青应助务实时光采纳,获得10
10秒前
10秒前
Jasper应助mate采纳,获得30
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692816
求助须知:如何正确求助?哪些是违规求助? 5090275
关于积分的说明 15209741
捐赠科研通 4849989
什么是DOI,文献DOI怎么找? 2601457
邀请新用户注册赠送积分活动 1553204
关于科研通互助平台的介绍 1511374