Basic behavior recognition of yaks based on improved SlowFast network

牦牛 计算机科学 模式识别(心理学) 特征(语言学) 人工智能 生物 动物科学 语言学 哲学
作者
Gang Sun,Tonghai Liu,Hang Zhang,Bowen Tan,Yuwei Li
出处
期刊:Ecological Informatics [Elsevier]
卷期号:78: 102313-102313 被引量:12
标识
DOI:10.1016/j.ecoinf.2023.102313
摘要

The yak is a symbol of the Tibetan Plateau and an indispensable livestock resource at high altitudes, with important ecological, economic, and cultural values. When yaks are sick, their excrement can cause serious damage to the highland ecosystem, so real-time monitoring of their health status is essential for ecological conservation. The daily behaviors of yaks, such as eating, lying, standing, and walking, contains a wealth of health information. By recognizing the behavior of yaks using computer vision technology, real-time monitoring of yak health status can be achieved, thus, effectively protecting the ecological environment while maintaining the economic benefits of yak breeding. This study proposes a non-contact yak behavior recognition method based on the SlowFast model. The method uses two paths with different sampling rates (i.e., Slow and Fast) to extract spatial and action features from the input video. The 3D Resnet50 network is selected as the backbone network of the SlowFast dual path after comparative analysis. The size of the 3D convolutional kernel is increased to improve the perceptual field of feature extraction, which in turn effectively improves the recognition accuracy of the algorithm. A total of 318 videos of yaks in different scenes and poses were captured for testing. Six different networks were selected to verify the performance of the proposed method: SlowFast-3DResnet50, SlowFast-3DResnet101, SlowFast-3DResnet152, 3DResnet50, C3D, and I3D. The experimental results show that the method achieves 96.6% recognition accuracy, 91.3% recall, and 90.5% precision in classifying the basic behaviors of yaks in natural scenes, and 97.3%, 99.1%, 95.9% and 94.1% for the four basic behaviors, respectively. These results are comprehensively better than the other six methods. In addition, compared with other 3D convolutional neural networks used for video classification, the method proposed in this paper can classify the target behavior from each video frame, which has a broader implications and application. The algorithm meets the needs for basic behavior recognition of yaks and lays the foundation for real-time monitoring of yak health status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
小二郎应助小榕采纳,获得10
3秒前
Sakura发布了新的文献求助10
3秒前
4秒前
英俊的铭应助xxxxx采纳,获得10
5秒前
可爱的若男完成签到 ,获得积分10
6秒前
Hello应助naturehome采纳,获得10
6秒前
7秒前
带线一去不回完成签到,获得积分10
7秒前
zzzzz完成签到,获得积分10
7秒前
袁大头发布了新的文献求助10
8秒前
时光中的微粒完成签到 ,获得积分10
8秒前
9秒前
HM发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助平常语堂采纳,获得10
10秒前
Ky_Mac应助xudanhong采纳,获得30
10秒前
Orange应助年糕菌采纳,获得30
10秒前
orixero应助大力的诗蕾采纳,获得10
11秒前
cc发布了新的文献求助10
12秒前
英俊的铭应助auggy采纳,获得10
12秒前
12秒前
12秒前
在水一方应助今晚雨很大采纳,获得10
12秒前
着急的小猫咪完成签到 ,获得积分10
13秒前
14秒前
泡泡茶壶发布了新的文献求助10
14秒前
天将明完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
12木发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助30
16秒前
呆萌听兰发布了新的文献求助10
16秒前
SciGPT应助HM采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729522
求助须知:如何正确求助?哪些是违规求助? 5319062
关于积分的说明 15316881
捐赠科研通 4876547
什么是DOI,文献DOI怎么找? 2619420
邀请新用户注册赠送积分活动 1568947
关于科研通互助平台的介绍 1525532