Basic behavior recognition of yaks based on improved SlowFast network

牦牛 计算机科学 模式识别(心理学) 特征(语言学) 人工智能 生物 语言学 哲学 动物科学
作者
Gang Sun,Tonghai Liu,Hang Zhang,Bowen Tan,Yuwei Li
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:78: 102313-102313 被引量:8
标识
DOI:10.1016/j.ecoinf.2023.102313
摘要

The yak is a symbol of the Tibetan Plateau and an indispensable livestock resource at high altitudes, with important ecological, economic, and cultural values. When yaks are sick, their excrement can cause serious damage to the highland ecosystem, so real-time monitoring of their health status is essential for ecological conservation. The daily behaviors of yaks, such as eating, lying, standing, and walking, contains a wealth of health information. By recognizing the behavior of yaks using computer vision technology, real-time monitoring of yak health status can be achieved, thus, effectively protecting the ecological environment while maintaining the economic benefits of yak breeding. This study proposes a non-contact yak behavior recognition method based on the SlowFast model. The method uses two paths with different sampling rates (i.e., Slow and Fast) to extract spatial and action features from the input video. The 3D Resnet50 network is selected as the backbone network of the SlowFast dual path after comparative analysis. The size of the 3D convolutional kernel is increased to improve the perceptual field of feature extraction, which in turn effectively improves the recognition accuracy of the algorithm. A total of 318 videos of yaks in different scenes and poses were captured for testing. Six different networks were selected to verify the performance of the proposed method: SlowFast-3DResnet50, SlowFast-3DResnet101, SlowFast-3DResnet152, 3DResnet50, C3D, and I3D. The experimental results show that the method achieves 96.6% recognition accuracy, 91.3% recall, and 90.5% precision in classifying the basic behaviors of yaks in natural scenes, and 97.3%, 99.1%, 95.9% and 94.1% for the four basic behaviors, respectively. These results are comprehensively better than the other six methods. In addition, compared with other 3D convolutional neural networks used for video classification, the method proposed in this paper can classify the target behavior from each video frame, which has a broader implications and application. The algorithm meets the needs for basic behavior recognition of yaks and lays the foundation for real-time monitoring of yak health status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白水池完成签到,获得积分10
1秒前
1秒前
3秒前
科研通AI5应助余晖霞光采纳,获得10
3秒前
4秒前
wali完成签到 ,获得积分0
4秒前
williamlouis发布了新的文献求助10
4秒前
_十三完成签到,获得积分10
5秒前
美满的晓丝完成签到,获得积分10
5秒前
小静静完成签到,获得积分20
5秒前
研友_Lw7MKL完成签到,获得积分10
6秒前
五博完成签到,获得积分20
6秒前
6秒前
7秒前
ff_ng77完成签到,获得积分10
7秒前
解冰珍发布了新的文献求助10
8秒前
myb完成签到,获得积分10
8秒前
感动的便当完成签到,获得积分10
8秒前
LADY应助美满的晓丝采纳,获得10
8秒前
8秒前
8秒前
9秒前
hxm完成签到,获得积分10
9秒前
奶桃七七发布了新的文献求助10
10秒前
善学以致用应助Wangyn采纳,获得10
10秒前
Cluneeeee应助Rixxed采纳,获得40
10秒前
所所应助bbbus采纳,获得10
12秒前
13秒前
39hpl完成签到,获得积分20
13秒前
13秒前
牛奶牛奶发布了新的文献求助10
13秒前
zkf发布了新的文献求助10
13秒前
14秒前
14秒前
聪明的傲白完成签到,获得积分10
14秒前
15秒前
15秒前
xtt发布了新的文献求助20
16秒前
39hpl发布了新的文献求助10
16秒前
碧蓝亦玉完成签到,获得积分10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842341
求助须知:如何正确求助?哪些是违规求助? 3384447
关于积分的说明 10534846
捐赠科研通 3104952
什么是DOI,文献DOI怎么找? 1709863
邀请新用户注册赠送积分活动 823415
科研通“疑难数据库(出版商)”最低求助积分说明 774059