Basic behavior recognition of yaks based on improved SlowFast network

牦牛 计算机科学 模式识别(心理学) 特征(语言学) 人工智能 生物 语言学 哲学 动物科学
作者
Gang Sun,Tonghai Liu,Hang Zhang,Bowen Tan,Yuwei Li
出处
期刊:Ecological Informatics [Elsevier]
卷期号:78: 102313-102313 被引量:8
标识
DOI:10.1016/j.ecoinf.2023.102313
摘要

The yak is a symbol of the Tibetan Plateau and an indispensable livestock resource at high altitudes, with important ecological, economic, and cultural values. When yaks are sick, their excrement can cause serious damage to the highland ecosystem, so real-time monitoring of their health status is essential for ecological conservation. The daily behaviors of yaks, such as eating, lying, standing, and walking, contains a wealth of health information. By recognizing the behavior of yaks using computer vision technology, real-time monitoring of yak health status can be achieved, thus, effectively protecting the ecological environment while maintaining the economic benefits of yak breeding. This study proposes a non-contact yak behavior recognition method based on the SlowFast model. The method uses two paths with different sampling rates (i.e., Slow and Fast) to extract spatial and action features from the input video. The 3D Resnet50 network is selected as the backbone network of the SlowFast dual path after comparative analysis. The size of the 3D convolutional kernel is increased to improve the perceptual field of feature extraction, which in turn effectively improves the recognition accuracy of the algorithm. A total of 318 videos of yaks in different scenes and poses were captured for testing. Six different networks were selected to verify the performance of the proposed method: SlowFast-3DResnet50, SlowFast-3DResnet101, SlowFast-3DResnet152, 3DResnet50, C3D, and I3D. The experimental results show that the method achieves 96.6% recognition accuracy, 91.3% recall, and 90.5% precision in classifying the basic behaviors of yaks in natural scenes, and 97.3%, 99.1%, 95.9% and 94.1% for the four basic behaviors, respectively. These results are comprehensively better than the other six methods. In addition, compared with other 3D convolutional neural networks used for video classification, the method proposed in this paper can classify the target behavior from each video frame, which has a broader implications and application. The algorithm meets the needs for basic behavior recognition of yaks and lays the foundation for real-time monitoring of yak health status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大个应助du采纳,获得10
2秒前
3秒前
负责玉米发布了新的文献求助10
3秒前
吱吱发布了新的文献求助30
5秒前
5秒前
5秒前
李健的小迷弟应助ZRDJ采纳,获得10
5秒前
xiewuhua完成签到,获得积分20
6秒前
Diya.发布了新的文献求助10
6秒前
开朗的之瑶完成签到,获得积分10
7秒前
贤嘚嘚发布了新的文献求助30
8秒前
春原发布了新的文献求助10
9秒前
hony发布了新的文献求助10
10秒前
灿烂千阳完成签到,获得积分10
11秒前
清新的涵双完成签到 ,获得积分20
12秒前
杨xy发布了新的文献求助10
12秒前
今后应助叽里呱啦采纳,获得10
13秒前
14秒前
Nn完成签到,获得积分20
14秒前
英姑应助天天开心采纳,获得10
16秒前
元谷雪发布了新的文献求助10
18秒前
JamesPei应助研友_8KXdRL采纳,获得10
18秒前
舒适的小刺猬完成签到,获得积分20
19秒前
Nn发布了新的文献求助10
19秒前
20秒前
CR7完成签到,获得积分10
20秒前
22秒前
酉时之水发布了新的文献求助10
24秒前
明理念桃完成签到,获得积分10
24秒前
25秒前
贤嘚嘚发布了新的文献求助10
25秒前
SCI狂徒邓超完成签到,获得积分10
26秒前
27秒前
乐乐应助石愚志采纳,获得10
28秒前
28秒前
传奇3应助Tess采纳,获得10
28秒前
28秒前
研友_8KXdRL发布了新的文献求助10
31秒前
ZRDJ发布了新的文献求助10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309624
求助须知:如何正确求助?哪些是违规求助? 2942923
关于积分的说明 8511679
捐赠科研通 2618018
什么是DOI,文献DOI怎么找? 1430760
科研通“疑难数据库(出版商)”最低求助积分说明 664249
邀请新用户注册赠送积分活动 649437