避障
计算机科学
避碰
弹道
强化学习
规划师
人工智能
模仿
机器人
国家(计算机科学)
集合(抽象数据类型)
运动(物理)
碰撞
控制理论(社会学)
移动机器人
算法
控制(管理)
天文
程序设计语言
物理
社会心理学
计算机安全
心理学
作者
Junjie Lu,Bailing Tian,Hongming Shen,Xuewei Zhang,Yulin Hui
出处
期刊:IEEE robotics and automation letters
日期:2023-09-21
卷期号:8 (11): 7058-7065
被引量:3
标识
DOI:10.1109/lra.2023.3314350
摘要
In this work, we propose a reaction-based local planner for autonomous collision avoidance of quadrotor in obstacle-cluttered environment without relying on an explicit map. Our approach searches for feasible trajectory using a set of motion primitives in state lattice and represents the optimal one as a polynomial by solving an optimal control problem. A modified Q-network, termed LPNet, is presented to predict the action-values of motion primitives from the current depth image and the state estimation of the quadrotor directly. To train the proposed LPNet, a primitive-based expert policy with privileged information about the surroundings and unconstrained computational budget is developed to provide demonstrations for imitation learning. Finally, a series of experiments are conducted to demonstrate the effectiveness and time-efficiency of the proposed method in both simulation and real-world.
科研通智能强力驱动
Strongly Powered by AbleSci AI