Predicting the martensitic transition temperatures in ternary shape memory alloys Ni0.5Ti0.5−xHfx

正交晶系 单斜晶系 材料科学 马氏体 三元运算 形状记忆合金 热力学 二进制数 相变 组分(热力学) 工作(物理) 结晶学 计算机科学 微观结构 晶体结构 冶金 物理 化学 数学 算术 程序设计语言
作者
Zhigang Wu,Hessam Malmir,Othmane Benafan,John W. Lawson
出处
期刊:Acta Materialia [Elsevier]
卷期号:261: 119362-119362 被引量:4
标识
DOI:10.1016/j.actamat.2023.119362
摘要

Martensitic transition temperatures (MTTs) can be tuned by alloying binaries with other elements to create multi-component shape memory alloys (SMAs). However, it is inefficient to use the trial-and-error approach to find compositions with desirable operating temperatures because of the large number of combinations of metals possible to form ternaries, quaternaries, etc. Thus it is crucial to develop the theoretical capability of accurately predicting MTTs as a function of composition, in order to provide experimentalists with necessary and reliable guidance. Previous work has focused on developing and applying first-principles methods to compute phase transitions and MTTs in binary SMAs such as NiTi (nitinol), but certain technical problems associated with the multi-component SMAs remain unsolved. In this work, we employed ab initio molecular dynamics (MD) and thermodynamics integration to study the NiTiHf-based high-temperature ternary SMAs. We overcome the technical challenges to accurately obtain the Gibbs free energy in cubic ternaries where the reference structures are unknown. Specifically, we examined the cubic, monoclinic and orthorhombic structures of Ni0.5Ti0.5−xHfx for x∈[0,0.5], and our results suggest that the cubic-to-monoclinic martensitic transition occurs when x<0.08, for x>0.17 the martensitic transition is between the cubic and orthorhombic phases, whereas in between our calculations cannot distinguish these two martensite structures near the MTT. The computed MTTs vs Hf content x are in good agreement with measured data. Thus our current work paves the way for computational design of multi-component SMAs with desired properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助bluer采纳,获得10
1秒前
poo1900完成签到,获得积分10
1秒前
ssx完成签到,获得积分10
1秒前
1秒前
xuanxuan完成签到,获得积分10
1秒前
CyrusSo524完成签到,获得积分10
1秒前
1秒前
格格星完成签到,获得积分10
2秒前
jackish完成签到,获得积分10
2秒前
2秒前
2秒前
英姑应助温柔若采纳,获得10
2秒前
3秒前
熠熠完成签到,获得积分10
5秒前
wangping发布了新的文献求助10
5秒前
李爱国应助小豆芽儿采纳,获得10
5秒前
6秒前
6秒前
FFF完成签到,获得积分20
7秒前
学术小黄完成签到,获得积分10
7秒前
么系么系发布了新的文献求助10
7秒前
8秒前
小洪俊熙完成签到,获得积分10
9秒前
123完成签到,获得积分10
9秒前
SYLH应助di采纳,获得10
9秒前
9秒前
柒毛完成签到 ,获得积分10
10秒前
搜集达人应助tatata采纳,获得20
10秒前
英俊的铭应助诚c采纳,获得10
10秒前
兔子完成签到 ,获得积分10
10秒前
10秒前
苹果巧蕊完成签到 ,获得积分10
10秒前
脑洞疼应助SDS采纳,获得10
10秒前
JamesPei应助Guo采纳,获得20
11秒前
马保国123完成签到,获得积分10
11秒前
11秒前
11秒前
迷你的冰巧完成签到,获得积分10
11秒前
万能图书馆应助学术蝗虫采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678