Identification of LRRK2 Inhibitors through Computational Drug Repurposing

重新调整用途 药物重新定位 LRRK2 药物发现 虚拟筛选 药理学 计算生物学 药品 激酶 化学 生物信息学 医学 生物 生物化学 突变 基因 生态学
作者
Shuoyan Tan,Ruiqiang Lu,Dahong Yao,Jun Wang,Peng Gao,Guotong Xie,Huanxiang Liu,Xiaojun Yao
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:14 (3): 481-493 被引量:12
标识
DOI:10.1021/acschemneuro.2c00672
摘要

Parkinson's disease (PD) is the second most common neurodegenerative disorder that affects more than ten million people worldwide. However, the current PD treatments are still limited and alternative treatment strategies are urgently required. Leucine-rich repeat kinase 2 (LRRK2) has been recognized as a promising target for PD treatment. However, there are no approved LRRK2 inhibitors on the market. To rapidly identify potential drug repurposing candidates that inhibit LRRK2 kinase, we report a structure-based drug repurposing workflow that combines molecular docking, recursive partitioning model, molecular dynamics (MD) simulation, and molecular mechanics-generalized Born surface area (MM-GBSA) calculation. Thirteen compounds screened from our drug repurposing workflow were further evaluated through the experiment. The experimental results showed six drugs (Abivertinib, Aumolertinib, Encorafenib, Bosutinib, Rilzabrutinib, and Mobocertinib) with IC50 less than 5 μM that were identified as potential LRRK2 kinase inhibitors. The most potent compound Abivertinib showed potent inhibitions with IC50 toward G2019S mutation and wild-type LRRK2 of 410.3 nM and 177.0 nM, respectively. Our combination screening strategy had a 53% hit rate in this repurposing task. MD simulations and MM-GBSA free energy analysis further revealed the atomic binding mechanism between the identified drugs and G2019S LRRK2. In summary, the results showed that our drug repurposing workflow could be used to identify potent compounds for LRRK2. The potent inhibitors discovered in our work can be a starting point to develop more effective LRRK2 inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Z7WGlZ完成签到,获得积分10
刚刚
leslie完成签到,获得积分10
刚刚
murrayss发布了新的文献求助10
1秒前
CodeCraft应助Zheng采纳,获得10
1秒前
2秒前
2秒前
积极书双发布了新的文献求助10
2秒前
搜集达人应助语物采纳,获得10
2秒前
深情安青应助JIE采纳,获得10
3秒前
3秒前
清秀的砖头完成签到,获得积分10
3秒前
4秒前
采集瘤胃液一次完成签到 ,获得积分10
4秒前
搞钱完成签到,获得积分10
4秒前
调研昵称发布了新的文献求助10
5秒前
Mindray发布了新的文献求助10
7秒前
xixi626完成签到 ,获得积分10
7秒前
whh123发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
9秒前
崔小好发布了新的文献求助10
9秒前
白日幻想家完成签到 ,获得积分10
10秒前
Ava应助土归土采纳,获得10
11秒前
11秒前
11秒前
Yasing发布了新的文献求助10
11秒前
66完成签到,获得积分10
12秒前
12秒前
安走天发布了新的文献求助10
13秒前
在水一方应助郎治宇采纳,获得10
14秒前
beleve发布了新的文献求助10
14秒前
15秒前
JIE发布了新的文献求助10
15秒前
15秒前
leslie发布了新的文献求助10
16秒前
lhl发布了新的文献求助10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
hebilie发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160291
求助须知:如何正确求助?哪些是违规求助? 2811389
关于积分的说明 7892168
捐赠科研通 2470409
什么是DOI,文献DOI怎么找? 1315568
科研通“疑难数据库(出版商)”最低求助积分说明 630869
版权声明 602038