Identification of LRRK2 Inhibitors through Computational Drug Repurposing

重新调整用途 药物重新定位 LRRK2 药物发现 虚拟筛选 药理学 计算生物学 药品 激酶 化学 生物信息学 医学 生物 生物化学 突变 基因 生态学
作者
Shuoyan Tan,Ruiqiang Lu,Dahong Yao,Jun Wang,Peng Gao,Guotong Xie,Huanxiang Liu,Xiaojun Yao
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:14 (3): 481-493 被引量:12
标识
DOI:10.1021/acschemneuro.2c00672
摘要

Parkinson's disease (PD) is the second most common neurodegenerative disorder that affects more than ten million people worldwide. However, the current PD treatments are still limited and alternative treatment strategies are urgently required. Leucine-rich repeat kinase 2 (LRRK2) has been recognized as a promising target for PD treatment. However, there are no approved LRRK2 inhibitors on the market. To rapidly identify potential drug repurposing candidates that inhibit LRRK2 kinase, we report a structure-based drug repurposing workflow that combines molecular docking, recursive partitioning model, molecular dynamics (MD) simulation, and molecular mechanics-generalized Born surface area (MM-GBSA) calculation. Thirteen compounds screened from our drug repurposing workflow were further evaluated through the experiment. The experimental results showed six drugs (Abivertinib, Aumolertinib, Encorafenib, Bosutinib, Rilzabrutinib, and Mobocertinib) with IC50 less than 5 μM that were identified as potential LRRK2 kinase inhibitors. The most potent compound Abivertinib showed potent inhibitions with IC50 toward G2019S mutation and wild-type LRRK2 of 410.3 nM and 177.0 nM, respectively. Our combination screening strategy had a 53% hit rate in this repurposing task. MD simulations and MM-GBSA free energy analysis further revealed the atomic binding mechanism between the identified drugs and G2019S LRRK2. In summary, the results showed that our drug repurposing workflow could be used to identify potent compounds for LRRK2. The potent inhibitors discovered in our work can be a starting point to develop more effective LRRK2 inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
屹舟完成签到,获得积分10
1秒前
zjudxn关注了科研通微信公众号
1秒前
2秒前
2秒前
科研通AI5应助hu970采纳,获得10
2秒前
2秒前
艺玲发布了新的文献求助10
3秒前
咚咚咚完成签到,获得积分10
3秒前
芋圆Z.完成签到,获得积分10
3秒前
atad2发布了新的文献求助10
3秒前
li梨完成签到,获得积分10
3秒前
4秒前
晏小敏完成签到,获得积分10
4秒前
爆米花应助风中寄云采纳,获得10
5秒前
屹舟发布了新的文献求助10
5秒前
Dou完成签到,获得积分10
5秒前
白泯完成签到,获得积分10
6秒前
1ssd发布了新的文献求助10
6秒前
667发布了新的文献求助10
6秒前
小二郎应助辰柒采纳,获得10
7秒前
8秒前
8秒前
clear完成签到,获得积分20
8秒前
8秒前
orixero应助congguitar采纳,获得10
8秒前
Evan完成签到,获得积分10
8秒前
YANG发布了新的文献求助10
9秒前
9秒前
123发布了新的文献求助10
9秒前
sunzhiyu233发布了新的文献求助10
10秒前
Raul完成签到 ,获得积分10
10秒前
10秒前
伯尔尼圆白菜完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
buuyoo完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759