Distributed deep learning enabled prediction on cutting tool wear and remaining useful life

卷积神经网络 计算机科学 GSM演进的增强数据速率 刀具磨损 云计算 人工智能 深度学习 过程(计算) 人工神经网络 信号(编程语言) 边缘设备 刀具 机械加工 机器学习 实时计算 工程类 操作系统 机械工程 程序设计语言
作者
Weidong Li,Xiaoyang Zhang,Sheng Wang,Xin Lü,Zhiwen Huang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE]
卷期号:237 (14): 2203-2213 被引量:2
标识
DOI:10.1177/09544054221148776
摘要

To optimise the utilisation cost of cutting tools, it is imperative to develop an online system to efficiently and accurately predict tool wear conditions and remaining useful lives (RULs). With this aim, a novel system is proposed based on deep learning algorithms distributed over an edge-cloud computing architecture. The system is innovative in the following aspects: (i) a lightweight convolutional neural network-random forest (CNN-RF) model is designed to be executed on an edge device to assess tool wear conditions efficiently, which supports severe tool resilience and tool replacement when necessary; (ii) a convolutional neural network-long short-term memory (CNN-LSTM) model is designed to be executed on a cloud to process long-term signals to predict the RUL of the cutting tool, which supports fine-tuning tool parameters dynamically; (iii) a signal compression mechanism is developed to condense the signals of tooling conditions into 2D images so the signal volumes transferred over the network are minimised and signal security is improved. Experiments were performed in a real-world machining workshop for research methodology validation. It showed that the prediction accuracies for tool wear and RUL achieved 90.6% and 93.2%, respectively, and the volume of signals transferred over the network was reduced by 89.0%. The experiments and benchmarks with comparative algorithms demonstrated that the system and its methodology exhibited great potential to reinforce cutting tool optimisation for real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
huizi发布了新的文献求助10
1秒前
1秒前
小星云完成签到,获得积分20
2秒前
2秒前
2秒前
hi完成签到,获得积分10
3秒前
3秒前
烟花应助徐瑶瑶采纳,获得10
3秒前
风登楼完成签到,获得积分10
3秒前
小黄应助kay采纳,获得10
5秒前
edisondc发布了新的文献求助10
5秒前
6秒前
鲤鱼梨愁发布了新的文献求助10
6秒前
赵吉思汗完成签到,获得积分10
7秒前
狗狗应助liuhuan采纳,获得10
7秒前
7秒前
西贝完成签到,获得积分10
7秒前
fxx1026关注了科研通微信公众号
8秒前
8秒前
bofu发布了新的文献求助10
9秒前
9秒前
荷小哈关注了科研通微信公众号
10秒前
10秒前
lss发布了新的文献求助10
10秒前
huizi完成签到,获得积分20
10秒前
lalala应助123采纳,获得10
10秒前
彭于晏应助zino采纳,获得10
10秒前
徐瑶瑶完成签到,获得积分10
11秒前
伍剑发布了新的文献求助10
11秒前
小一一发布了新的文献求助10
11秒前
12秒前
zy发布了新的文献求助10
12秒前
wy.he应助青青青采纳,获得20
12秒前
wanci应助chy采纳,获得10
13秒前
13秒前
13秒前
14秒前
14秒前
guojin完成签到,获得积分20
14秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328460
求助须知:如何正确求助?哪些是违规求助? 2958479
关于积分的说明 8590607
捐赠科研通 2636706
什么是DOI,文献DOI怎么找? 1443184
科研通“疑难数据库(出版商)”最低求助积分说明 668564
邀请新用户注册赠送积分活动 655786