Distributed deep learning enabled prediction on cutting tool wear and remaining useful life

卷积神经网络 计算机科学 GSM演进的增强数据速率 刀具磨损 云计算 人工智能 深度学习 过程(计算) 人工神经网络 信号(编程语言) 边缘设备 刀具 机械加工 机器学习 实时计算 工程类 操作系统 机械工程 程序设计语言
作者
Weidong Li,Xiaoyang Zhang,Sheng Wang,Xin Lü,Zhiwen Huang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE]
卷期号:237 (14): 2203-2213 被引量:2
标识
DOI:10.1177/09544054221148776
摘要

To optimise the utilisation cost of cutting tools, it is imperative to develop an online system to efficiently and accurately predict tool wear conditions and remaining useful lives (RULs). With this aim, a novel system is proposed based on deep learning algorithms distributed over an edge-cloud computing architecture. The system is innovative in the following aspects: (i) a lightweight convolutional neural network-random forest (CNN-RF) model is designed to be executed on an edge device to assess tool wear conditions efficiently, which supports severe tool resilience and tool replacement when necessary; (ii) a convolutional neural network-long short-term memory (CNN-LSTM) model is designed to be executed on a cloud to process long-term signals to predict the RUL of the cutting tool, which supports fine-tuning tool parameters dynamically; (iii) a signal compression mechanism is developed to condense the signals of tooling conditions into 2D images so the signal volumes transferred over the network are minimised and signal security is improved. Experiments were performed in a real-world machining workshop for research methodology validation. It showed that the prediction accuracies for tool wear and RUL achieved 90.6% and 93.2%, respectively, and the volume of signals transferred over the network was reduced by 89.0%. The experiments and benchmarks with comparative algorithms demonstrated that the system and its methodology exhibited great potential to reinforce cutting tool optimisation for real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dian发布了新的文献求助10
1秒前
baobeikk完成签到,获得积分10
2秒前
美满的红酒完成签到 ,获得积分10
4秒前
精明冰蓝完成签到,获得积分10
4秒前
爆米花应助liquor采纳,获得10
5秒前
6秒前
cheryjay发布了新的文献求助150
7秒前
7秒前
大方听白完成签到 ,获得积分10
7秒前
imchenyin完成签到,获得积分10
8秒前
似鱼是于无所求完成签到,获得积分10
9秒前
海咲umi应助熊猫采纳,获得10
11秒前
解语花发布了新的文献求助10
11秒前
快乐小狗完成签到,获得积分10
12秒前
朴实雨竹完成签到,获得积分10
12秒前
完美世界应助韶华采纳,获得10
12秒前
倒霉兔子完成签到,获得积分0
13秒前
14秒前
14秒前
15秒前
yuchen完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
曹操的曹发布了新的文献求助30
18秒前
在水一方应助姗珊采纳,获得10
20秒前
20秒前
liquor发布了新的文献求助10
20秒前
竹马子完成签到,获得积分10
21秒前
21秒前
可爱的青荷完成签到 ,获得积分10
21秒前
Dawn完成签到,获得积分20
23秒前
23秒前
平安完成签到 ,获得积分10
24秒前
找文献找文献完成签到 ,获得积分10
24秒前
青木完成签到 ,获得积分10
25秒前
IDHNAPHO发布了新的文献求助10
25秒前
钰泠完成签到 ,获得积分10
27秒前
董梦晴发布了新的社区帖子
27秒前
小猪找库里完成签到,获得积分10
28秒前
Dawn发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603974
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856352
捐赠科研通 4695693
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507254
关于科研通互助平台的介绍 1471832