Distributed deep learning enabled prediction on cutting tool wear and remaining useful life

卷积神经网络 计算机科学 GSM演进的增强数据速率 刀具磨损 云计算 人工智能 深度学习 过程(计算) 人工神经网络 信号(编程语言) 边缘设备 刀具 机械加工 机器学习 实时计算 工程类 操作系统 机械工程 程序设计语言
作者
Weidong Li,Xiaoyang Zhang,Sheng Wang,Xin Lü,Zhiwen Huang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE Publishing]
卷期号:237 (14): 2203-2213 被引量:2
标识
DOI:10.1177/09544054221148776
摘要

To optimise the utilisation cost of cutting tools, it is imperative to develop an online system to efficiently and accurately predict tool wear conditions and remaining useful lives (RULs). With this aim, a novel system is proposed based on deep learning algorithms distributed over an edge-cloud computing architecture. The system is innovative in the following aspects: (i) a lightweight convolutional neural network-random forest (CNN-RF) model is designed to be executed on an edge device to assess tool wear conditions efficiently, which supports severe tool resilience and tool replacement when necessary; (ii) a convolutional neural network-long short-term memory (CNN-LSTM) model is designed to be executed on a cloud to process long-term signals to predict the RUL of the cutting tool, which supports fine-tuning tool parameters dynamically; (iii) a signal compression mechanism is developed to condense the signals of tooling conditions into 2D images so the signal volumes transferred over the network are minimised and signal security is improved. Experiments were performed in a real-world machining workshop for research methodology validation. It showed that the prediction accuracies for tool wear and RUL achieved 90.6% and 93.2%, respectively, and the volume of signals transferred over the network was reduced by 89.0%. The experiments and benchmarks with comparative algorithms demonstrated that the system and its methodology exhibited great potential to reinforce cutting tool optimisation for real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zp完成签到,获得积分10
1秒前
1秒前
搜集达人应助79采纳,获得10
2秒前
ZX801发布了新的文献求助10
3秒前
森林林林完成签到 ,获得积分10
3秒前
李健应助禾禾采纳,获得10
4秒前
自由保温杯完成签到,获得积分10
4秒前
weige发布了新的文献求助10
4秒前
一坨耙耙完成签到,获得积分10
5秒前
多久上课发布了新的文献求助10
5秒前
li发布了新的文献求助10
6秒前
jenningseastera应助liuxl采纳,获得10
7秒前
chosmos发布了新的文献求助10
7秒前
9秒前
小yi又困啦完成签到 ,获得积分10
9秒前
whoknowsname发布了新的文献求助30
9秒前
爆米花应助多久上课采纳,获得10
10秒前
10秒前
11秒前
小马甲应助勤恳曼卉采纳,获得10
12秒前
李爱国应助简简采纳,获得80
13秒前
seven发布了新的文献求助10
14秒前
myf发布了新的文献求助10
15秒前
16秒前
小远发布了新的文献求助10
16秒前
17秒前
LioXH完成签到,获得积分10
18秒前
19秒前
大个应助我不采纳,获得10
20秒前
21秒前
不系之舟完成签到,获得积分10
21秒前
充电宝应助XuWei采纳,获得10
21秒前
21秒前
文献蚂蚁发布了新的文献求助10
22秒前
22秒前
111发布了新的文献求助30
22秒前
23秒前
一二完成签到 ,获得积分10
23秒前
田様应助harrision采纳,获得10
24秒前
aou发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538095
求助须知:如何正确求助?哪些是违规求助? 3972801
关于积分的说明 12306882
捐赠科研通 3639551
什么是DOI,文献DOI怎么找? 2003944
邀请新用户注册赠送积分活动 1039353
科研通“疑难数据库(出版商)”最低求助积分说明 928718