Distributed deep learning enabled prediction on cutting tool wear and remaining useful life

卷积神经网络 计算机科学 GSM演进的增强数据速率 刀具磨损 云计算 人工智能 深度学习 过程(计算) 人工神经网络 信号(编程语言) 边缘设备 刀具 机械加工 机器学习 实时计算 工程类 操作系统 机械工程 程序设计语言
作者
Weidong Li,Xiaoyang Zhang,Sheng Wang,Xin Lü,Zhiwen Huang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE]
卷期号:237 (14): 2203-2213 被引量:2
标识
DOI:10.1177/09544054221148776
摘要

To optimise the utilisation cost of cutting tools, it is imperative to develop an online system to efficiently and accurately predict tool wear conditions and remaining useful lives (RULs). With this aim, a novel system is proposed based on deep learning algorithms distributed over an edge-cloud computing architecture. The system is innovative in the following aspects: (i) a lightweight convolutional neural network-random forest (CNN-RF) model is designed to be executed on an edge device to assess tool wear conditions efficiently, which supports severe tool resilience and tool replacement when necessary; (ii) a convolutional neural network-long short-term memory (CNN-LSTM) model is designed to be executed on a cloud to process long-term signals to predict the RUL of the cutting tool, which supports fine-tuning tool parameters dynamically; (iii) a signal compression mechanism is developed to condense the signals of tooling conditions into 2D images so the signal volumes transferred over the network are minimised and signal security is improved. Experiments were performed in a real-world machining workshop for research methodology validation. It showed that the prediction accuracies for tool wear and RUL achieved 90.6% and 93.2%, respectively, and the volume of signals transferred over the network was reduced by 89.0%. The experiments and benchmarks with comparative algorithms demonstrated that the system and its methodology exhibited great potential to reinforce cutting tool optimisation for real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助张文静采纳,获得10
3秒前
5秒前
6秒前
8秒前
致李峋完成签到,获得积分10
10秒前
wait发布了新的文献求助10
11秒前
科研通AI6应助YUESIYA采纳,获得10
12秒前
12秒前
优美季节完成签到 ,获得积分10
12秒前
自信的书南完成签到,获得积分10
13秒前
13秒前
科研通AI6应助潮汐采纳,获得10
14秒前
妮妮发布了新的文献求助10
14秒前
14秒前
Ori完成签到,获得积分20
15秒前
16秒前
田甜甜发布了新的文献求助10
16秒前
星辰大海应助跳跃的访琴采纳,获得10
16秒前
20秒前
深味i完成签到,获得积分10
20秒前
张文静发布了新的文献求助10
21秒前
HL完成签到,获得积分10
22秒前
22秒前
春暖花开给春暖花开的求助进行了留言
24秒前
犬来八荒完成签到,获得积分10
25秒前
南佳发布了新的文献求助10
27秒前
27秒前
Owen应助加菲丰丰采纳,获得10
28秒前
28秒前
28秒前
科研小虫完成签到,获得积分10
29秒前
博士通完成签到 ,获得积分10
29秒前
29秒前
甜甜的觅夏完成签到,获得积分10
30秒前
30秒前
撖堡包完成签到 ,获得积分10
30秒前
_lucky_发布了新的文献求助10
32秒前
33秒前
觉醒青年发布了新的文献求助10
33秒前
Bonnienuit发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560555
求助须知:如何正确求助?哪些是违规求助? 4645805
关于积分的说明 14676221
捐赠科研通 4586997
什么是DOI,文献DOI怎么找? 2516667
邀请新用户注册赠送积分活动 1490212
关于科研通互助平台的介绍 1461088