清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Distributed deep learning enabled prediction on cutting tool wear and remaining useful life

卷积神经网络 计算机科学 GSM演进的增强数据速率 刀具磨损 云计算 人工智能 深度学习 过程(计算) 人工神经网络 信号(编程语言) 边缘设备 刀具 机械加工 机器学习 实时计算 工程类 操作系统 机械工程 程序设计语言
作者
Weidong Li,Xiaoyang Zhang,Sheng Wang,Xin Lü,Zhiwen Huang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE]
卷期号:237 (14): 2203-2213 被引量:2
标识
DOI:10.1177/09544054221148776
摘要

To optimise the utilisation cost of cutting tools, it is imperative to develop an online system to efficiently and accurately predict tool wear conditions and remaining useful lives (RULs). With this aim, a novel system is proposed based on deep learning algorithms distributed over an edge-cloud computing architecture. The system is innovative in the following aspects: (i) a lightweight convolutional neural network-random forest (CNN-RF) model is designed to be executed on an edge device to assess tool wear conditions efficiently, which supports severe tool resilience and tool replacement when necessary; (ii) a convolutional neural network-long short-term memory (CNN-LSTM) model is designed to be executed on a cloud to process long-term signals to predict the RUL of the cutting tool, which supports fine-tuning tool parameters dynamically; (iii) a signal compression mechanism is developed to condense the signals of tooling conditions into 2D images so the signal volumes transferred over the network are minimised and signal security is improved. Experiments were performed in a real-world machining workshop for research methodology validation. It showed that the prediction accuracies for tool wear and RUL achieved 90.6% and 93.2%, respectively, and the volume of signals transferred over the network was reduced by 89.0%. The experiments and benchmarks with comparative algorithms demonstrated that the system and its methodology exhibited great potential to reinforce cutting tool optimisation for real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33秒前
35秒前
35秒前
hhh完成签到 ,获得积分10
35秒前
36秒前
36秒前
37秒前
38秒前
38秒前
39秒前
39秒前
40秒前
40秒前
lawang发布了新的文献求助10
40秒前
lawang发布了新的文献求助10
40秒前
lawang发布了新的文献求助10
40秒前
lawang发布了新的文献求助10
40秒前
lawang发布了新的文献求助10
40秒前
lawang发布了新的文献求助10
40秒前
lawang发布了新的文献求助10
43秒前
lawang发布了新的文献求助10
43秒前
lawang发布了新的文献求助10
43秒前
lawang发布了新的文献求助10
43秒前
lawang发布了新的文献求助10
43秒前
lawang发布了新的文献求助10
43秒前
lawang发布了新的文献求助10
43秒前
lawang发布了新的文献求助10
43秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
魔幻的从丹完成签到 ,获得积分10
2分钟前
corleeang完成签到 ,获得积分10
2分钟前
2分钟前
tt完成签到,获得积分10
2分钟前
一二发布了新的文献求助10
2分钟前
兰先生完成签到 ,获得积分10
2分钟前
一二完成签到,获得积分10
2分钟前
wwe完成签到,获得积分10
3分钟前
3分钟前
打打应助lawang采纳,获得10
3分钟前
李健应助lawang采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658175
求助须知:如何正确求助?哪些是违规求助? 4818012
关于积分的说明 15080950
捐赠科研通 4816522
什么是DOI,文献DOI怎么找? 2577459
邀请新用户注册赠送积分活动 1532399
关于科研通互助平台的介绍 1491024