Distributed deep learning enabled prediction on cutting tool wear and remaining useful life

卷积神经网络 计算机科学 GSM演进的增强数据速率 刀具磨损 云计算 人工智能 深度学习 过程(计算) 人工神经网络 信号(编程语言) 边缘设备 刀具 机械加工 机器学习 实时计算 工程类 操作系统 机械工程 程序设计语言
作者
Weidong Li,Xiaoyang Zhang,Sheng Wang,Xin Lü,Zhiwen Huang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE Publishing]
卷期号:237 (14): 2203-2213 被引量:2
标识
DOI:10.1177/09544054221148776
摘要

To optimise the utilisation cost of cutting tools, it is imperative to develop an online system to efficiently and accurately predict tool wear conditions and remaining useful lives (RULs). With this aim, a novel system is proposed based on deep learning algorithms distributed over an edge-cloud computing architecture. The system is innovative in the following aspects: (i) a lightweight convolutional neural network-random forest (CNN-RF) model is designed to be executed on an edge device to assess tool wear conditions efficiently, which supports severe tool resilience and tool replacement when necessary; (ii) a convolutional neural network-long short-term memory (CNN-LSTM) model is designed to be executed on a cloud to process long-term signals to predict the RUL of the cutting tool, which supports fine-tuning tool parameters dynamically; (iii) a signal compression mechanism is developed to condense the signals of tooling conditions into 2D images so the signal volumes transferred over the network are minimised and signal security is improved. Experiments were performed in a real-world machining workshop for research methodology validation. It showed that the prediction accuracies for tool wear and RUL achieved 90.6% and 93.2%, respectively, and the volume of signals transferred over the network was reduced by 89.0%. The experiments and benchmarks with comparative algorithms demonstrated that the system and its methodology exhibited great potential to reinforce cutting tool optimisation for real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斑斑发布了新的文献求助10
刚刚
任性英姑完成签到,获得积分10
刚刚
Jade发布了新的文献求助10
1秒前
科研通AI5应助稳重馒头采纳,获得10
1秒前
把妹王发布了新的文献求助10
1秒前
Ava应助医药两不通的研狗采纳,获得10
2秒前
jiaminzhao完成签到,获得积分10
3秒前
3秒前
8R60d8应助大力大神采纳,获得10
4秒前
啊啊啊啊完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
刘志鹏发布了新的文献求助10
5秒前
把妹王完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
浮游应助我不到啊采纳,获得10
7秒前
Jade完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
liusiqi关注了科研通微信公众号
8秒前
9秒前
式微发布了新的文献求助10
9秒前
学术蛔虫给学术蛔虫的求助进行了留言
10秒前
zaohesu发布了新的文献求助10
10秒前
10秒前
无止发布了新的文献求助10
10秒前
SciGPT应助MMZMJY采纳,获得10
11秒前
8R60d8应助爱喝冰咖啡采纳,获得10
11秒前
刘畅发布了新的文献求助10
11秒前
ZO完成签到,获得积分20
12秒前
12秒前
车厘子发布了新的文献求助10
12秒前
狂野忆文发布了新的文献求助10
13秒前
在水一方应助yaoyao采纳,获得40
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4867495
求助须知:如何正确求助?哪些是违规求助? 4159516
关于积分的说明 12898035
捐赠科研通 3913512
什么是DOI,文献DOI怎么找? 2149360
邀请新用户注册赠送积分活动 1167811
关于科研通互助平台的介绍 1070215