亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Distributed deep learning enabled prediction on cutting tool wear and remaining useful life

卷积神经网络 计算机科学 GSM演进的增强数据速率 刀具磨损 云计算 人工智能 深度学习 过程(计算) 人工神经网络 信号(编程语言) 边缘设备 刀具 机械加工 机器学习 实时计算 工程类 操作系统 机械工程 程序设计语言
作者
Weidong Li,Xiaoyang Zhang,Sheng Wang,Xin Lü,Zhiwen Huang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE Publishing]
卷期号:237 (14): 2203-2213 被引量:2
标识
DOI:10.1177/09544054221148776
摘要

To optimise the utilisation cost of cutting tools, it is imperative to develop an online system to efficiently and accurately predict tool wear conditions and remaining useful lives (RULs). With this aim, a novel system is proposed based on deep learning algorithms distributed over an edge-cloud computing architecture. The system is innovative in the following aspects: (i) a lightweight convolutional neural network-random forest (CNN-RF) model is designed to be executed on an edge device to assess tool wear conditions efficiently, which supports severe tool resilience and tool replacement when necessary; (ii) a convolutional neural network-long short-term memory (CNN-LSTM) model is designed to be executed on a cloud to process long-term signals to predict the RUL of the cutting tool, which supports fine-tuning tool parameters dynamically; (iii) a signal compression mechanism is developed to condense the signals of tooling conditions into 2D images so the signal volumes transferred over the network are minimised and signal security is improved. Experiments were performed in a real-world machining workshop for research methodology validation. It showed that the prediction accuracies for tool wear and RUL achieved 90.6% and 93.2%, respectively, and the volume of signals transferred over the network was reduced by 89.0%. The experiments and benchmarks with comparative algorithms demonstrated that the system and its methodology exhibited great potential to reinforce cutting tool optimisation for real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助核桃采纳,获得10
24秒前
科研通AI5应助核桃采纳,获得10
24秒前
科研通AI5应助核桃采纳,获得10
24秒前
可爱的函函应助核桃采纳,获得10
24秒前
Liufgui应助核桃采纳,获得10
25秒前
在水一方应助核桃采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得10
46秒前
丘比特应助科研通管家采纳,获得10
46秒前
爆米花应助科研通管家采纳,获得10
46秒前
LONG完成签到 ,获得积分10
58秒前
秋风今是完成签到 ,获得积分10
1分钟前
1分钟前
核桃发布了新的文献求助10
1分钟前
biubiubiu驳回了852应助
1分钟前
AUGKING27完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
无语的诗柳完成签到 ,获得积分10
2分钟前
nina完成签到 ,获得积分10
2分钟前
远山淡影_cy完成签到,获得积分20
2分钟前
康谨完成签到 ,获得积分10
2分钟前
blenx完成签到,获得积分10
2分钟前
2分钟前
小叶子完成签到 ,获得积分10
2分钟前
Liufgui应助徐悦月采纳,获得10
2分钟前
2分钟前
Dave完成签到,获得积分10
3分钟前
FashionBoy应助Dave采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
顾矜应助Emon采纳,获得10
3分钟前
3分钟前
4分钟前
芝麻完成签到,获得积分10
4分钟前
4分钟前
Dave发布了新的文献求助10
4分钟前
大模型应助芝麻采纳,获得10
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990045
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256334
捐赠科研通 3270943
什么是DOI,文献DOI怎么找? 1805146
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228