亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Distributed deep learning enabled prediction on cutting tool wear and remaining useful life

卷积神经网络 计算机科学 GSM演进的增强数据速率 刀具磨损 云计算 人工智能 深度学习 过程(计算) 人工神经网络 信号(编程语言) 边缘设备 刀具 机械加工 机器学习 实时计算 工程类 操作系统 机械工程 程序设计语言
作者
Weidong Li,Xiaoyang Zhang,Sheng Wang,Xin Lü,Zhiwen Huang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE]
卷期号:237 (14): 2203-2213 被引量:2
标识
DOI:10.1177/09544054221148776
摘要

To optimise the utilisation cost of cutting tools, it is imperative to develop an online system to efficiently and accurately predict tool wear conditions and remaining useful lives (RULs). With this aim, a novel system is proposed based on deep learning algorithms distributed over an edge-cloud computing architecture. The system is innovative in the following aspects: (i) a lightweight convolutional neural network-random forest (CNN-RF) model is designed to be executed on an edge device to assess tool wear conditions efficiently, which supports severe tool resilience and tool replacement when necessary; (ii) a convolutional neural network-long short-term memory (CNN-LSTM) model is designed to be executed on a cloud to process long-term signals to predict the RUL of the cutting tool, which supports fine-tuning tool parameters dynamically; (iii) a signal compression mechanism is developed to condense the signals of tooling conditions into 2D images so the signal volumes transferred over the network are minimised and signal security is improved. Experiments were performed in a real-world machining workshop for research methodology validation. It showed that the prediction accuracies for tool wear and RUL achieved 90.6% and 93.2%, respectively, and the volume of signals transferred over the network was reduced by 89.0%. The experiments and benchmarks with comparative algorithms demonstrated that the system and its methodology exhibited great potential to reinforce cutting tool optimisation for real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一点发布了新的文献求助10
2秒前
bkagyin应助糖诗采纳,获得10
3秒前
18秒前
机灵毛豆完成签到 ,获得积分10
21秒前
尘远知山静完成签到 ,获得积分10
22秒前
power完成签到,获得积分10
28秒前
38秒前
50秒前
清风明月完成签到 ,获得积分10
54秒前
haprier完成签到 ,获得积分10
1分钟前
感性的梦露完成签到,获得积分10
1分钟前
研友_VZG7GZ应助达不溜搽采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
atao关注了科研通微信公众号
1分钟前
深情安青应助atao采纳,获得10
1分钟前
陈陈完成签到,获得积分10
1分钟前
香蕉觅云应助材料生采纳,获得10
1分钟前
1分钟前
边雨完成签到 ,获得积分10
1分钟前
科目三应助Yuanyuan采纳,获得10
1分钟前
1分钟前
1分钟前
标致金毛发布了新的文献求助50
1分钟前
材料生发布了新的文献求助10
1分钟前
2分钟前
朴素寄文发布了新的文献求助10
2分钟前
2分钟前
2分钟前
星燃发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
宝宝熊的熊宝宝完成签到,获得积分10
2分钟前
2分钟前
扣子发布了新的文献求助30
2分钟前
Catching发布了新的文献求助10
2分钟前
atao发布了新的文献求助10
2分钟前
Criminology34应助标致金毛采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568155
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701843
捐赠科研通 4594471
什么是DOI,文献DOI怎么找? 2520964
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463696