Distributed deep learning enabled prediction on cutting tool wear and remaining useful life

卷积神经网络 计算机科学 GSM演进的增强数据速率 刀具磨损 云计算 人工智能 深度学习 过程(计算) 人工神经网络 信号(编程语言) 边缘设备 刀具 机械加工 机器学习 实时计算 工程类 操作系统 机械工程 程序设计语言
作者
Weidong Li,Xiaoyang Zhang,Sheng Wang,Xin Lü,Zhiwen Huang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE Publishing]
卷期号:237 (14): 2203-2213 被引量:2
标识
DOI:10.1177/09544054221148776
摘要

To optimise the utilisation cost of cutting tools, it is imperative to develop an online system to efficiently and accurately predict tool wear conditions and remaining useful lives (RULs). With this aim, a novel system is proposed based on deep learning algorithms distributed over an edge-cloud computing architecture. The system is innovative in the following aspects: (i) a lightweight convolutional neural network-random forest (CNN-RF) model is designed to be executed on an edge device to assess tool wear conditions efficiently, which supports severe tool resilience and tool replacement when necessary; (ii) a convolutional neural network-long short-term memory (CNN-LSTM) model is designed to be executed on a cloud to process long-term signals to predict the RUL of the cutting tool, which supports fine-tuning tool parameters dynamically; (iii) a signal compression mechanism is developed to condense the signals of tooling conditions into 2D images so the signal volumes transferred over the network are minimised and signal security is improved. Experiments were performed in a real-world machining workshop for research methodology validation. It showed that the prediction accuracies for tool wear and RUL achieved 90.6% and 93.2%, respectively, and the volume of signals transferred over the network was reduced by 89.0%. The experiments and benchmarks with comparative algorithms demonstrated that the system and its methodology exhibited great potential to reinforce cutting tool optimisation for real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木棉哆哆发布了新的文献求助10
刚刚
顾矜应助Jiujiu采纳,获得10
刚刚
1秒前
芷烟发布了新的文献求助10
1秒前
ZhouLu发布了新的文献求助10
1秒前
小L同学发布了新的文献求助10
2秒前
七七发布了新的文献求助10
2秒前
2秒前
xzh发布了新的文献求助10
2秒前
汉堡包应助dates2008采纳,获得10
3秒前
3秒前
乐乐应助炼金术士小彩虹采纳,获得10
3秒前
超级驳完成签到,获得积分10
3秒前
田様应助无心的芸采纳,获得10
4秒前
4秒前
4秒前
今后应助神经哈哈采纳,获得10
5秒前
青年才俊发布了新的文献求助20
5秒前
王博完成签到,获得积分10
7秒前
Z6745发布了新的文献求助10
8秒前
饼子发布了新的文献求助10
9秒前
炙热的荔枝完成签到 ,获得积分10
9秒前
feier发布了新的文献求助10
9秒前
10秒前
火华完成签到,获得积分20
10秒前
小汪汪完成签到 ,获得积分10
10秒前
10秒前
yy发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
科研通AI6应助柠檬酸循环采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252221
求助须知:如何正确求助?哪些是违规求助? 4416056
关于积分的说明 13748433
捐赠科研通 4287883
什么是DOI,文献DOI怎么找? 2352691
邀请新用户注册赠送积分活动 1349487
关于科研通互助平台的介绍 1308960