Establishment of a projection-pursuit-regression-based prediction model for the filtration performance of a micro-pressure filtration and cleaning tank for micro-irrigation

过滤(数学) 沉积物 滤波器(信号处理) 体积流量 环境工程 压滤机 环境科学 数学 工程类 统计 机械 地质学 电气工程 物理 古生物学
作者
Tao Huang,Zijing Wu,Yuankun Yang,Qiao Li,Mahemujiang Aihemaiti,Youwei Jiang,Jianqun Wei
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:388: 135992-135992 被引量:1
标识
DOI:10.1016/j.jclepro.2023.135992
摘要

Filtration is a key process of a micro-irrigation system. To achieve water conservation, improve the energy efficiency, and meet the low-carbon environmental requirements, this study investigates a new type of pre-pump filtration measure—the micro-pressure filtration and cleaning tank, and the sediment removal (SR), mass of intercepted sediment (Ma), and filtration time (t) are used as evaluation indicators. A uniform orthogonal test was designed to evaluate the influences of the initial sediment concentration, flow rate, and filter area. We carried out simulations using the projection pursuit regression (PPR) method based on physical measurement data, and then NSGA-II (fast elitist non-dominated sorting genetic algorithm) algorithm was used to find the optimal parameter values. The results showed that the order of the factors influencing the SR and Ma of the micro-pressure filtration and cleaning tank was the filter area > initial sediment concentration > flow rate. The order of the factors influencing the filtration time was flow rate > initial sediment concentration > filter area. A PPR prediction model was built based on the filter area, initial sediment concentration, flow rate, and assessment indicators, and the optimal operating conditions were determined (initial sediment concentration: 0.36 kg/m3, flow rate: 7 m3/h, and filter area: 2000 cm2). The research results demonstrated the filtration performance of the micro-pressure filtration and cleaning tank and provide a theoretical basis for the popularization and application of such tanks as well as a reference for sustainable new irrigation technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周小慧发布了新的文献求助10
刚刚
刚刚
自由寻菱完成签到 ,获得积分10
刚刚
1秒前
Akim应助丘奇采纳,获得10
2秒前
美丽小蕾发布了新的文献求助10
2秒前
dingdong发布了新的文献求助10
2秒前
ZX完成签到 ,获得积分10
2秒前
九川发布了新的文献求助10
2秒前
3秒前
3秒前
SandyH关注了科研通微信公众号
4秒前
4秒前
公西元柏发布了新的文献求助10
4秒前
碱性沉默发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
SciGPT应助猪猪采纳,获得10
5秒前
123发布了新的文献求助10
5秒前
独特微笑完成签到,获得积分10
5秒前
5秒前
nuonuo完成签到,获得积分10
6秒前
⊙▽⊙完成签到,获得积分10
6秒前
7秒前
MHB发布了新的文献求助50
7秒前
汉堡包应助马保国123采纳,获得10
7秒前
落晨发布了新的文献求助10
7秒前
Hello应助郑开司09采纳,获得10
8秒前
Jiangnj完成签到,获得积分10
8秒前
昵称发布了新的文献求助10
9秒前
含糊发布了新的文献求助10
9秒前
搜集达人应助8564523采纳,获得10
9秒前
无限的隶发布了新的文献求助10
9秒前
不安豁发布了新的文献求助10
9秒前
www发布了新的文献求助10
10秒前
10秒前
Crystal完成签到,获得积分10
11秒前
Laus发布了新的文献求助10
11秒前
orixero应助碱性沉默采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762