Development of an integrated predictive model for postoperative glioma-related epilepsy using gene-signature and clinical data

Lasso(编程语言) 逻辑回归 接收机工作特性 医学 癫痫 队列 胶质瘤 肿瘤科 内科学 计算机科学 癌症研究 精神科 万维网
作者
Lianwang Li,Chuanbao Zhang,Zheng Wang,Yinyan Wang,Yuhao Guo,Chong Qi,Gan You,Zhang Zhong,Xing Fan,Tao Jiang
出处
期刊:BMC Cancer [Springer Nature]
卷期号:23 (1) 被引量:2
标识
DOI:10.1186/s12885-022-10385-x
摘要

This study aimed to develop an integrated model for predicting the occurrence of postoperative seizures in patients with diffuse high-grade gliomas (DHGGs) using clinical and RNA-seq data.Patients with DHGGs, who received prophylactic anti-epileptic drugs (AEDs) for three months following surgery, were enrolled into the study. The patients were assigned randomly into training (n = 166) and validation (n = 42) cohorts. Differentially expressed genes (DEGs) were identified based on preoperative glioma-related epilepsy (GRE) history. Least absolute shrinkage and selection operator (LASSO) logistic regression analysis was used to construct a predictive gene-signature for the occurrence of postoperative seizures. The final integrated prediction model was generated using the gene-signature and clinical data. Receiver operating characteristic analysis and calibration curve method were used to evaluate the accuracy of the gene-signature and prediction model using the training and validation cohorts.A seven-gene signature for predicting the occurrence of postoperative seizures was developed using LASSO logistic regression analysis of 623 DEGs. The gene-signature showed satisfactory predictive capacity in the training cohort [area under the curve (AUC) = 0.842] and validation cohort (AUC = 0.751). The final integrated prediction model included age, temporal lobe involvement, preoperative GRE history, and gene-signature-derived risk score. The AUCs of the integrated prediction model were 0.878 and 0.845 for the training and validation cohorts, respectively.We developed an integrated prediction model for the occurrence of postoperative seizures in patients with DHGG using clinical and RNA-Seq data. The findings of this study may contribute to the development of personalized management strategies for patients with DHGGs and improve our understanding of the mechanisms underlying GRE in these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助惠耷采纳,获得10
2秒前
南城完成签到 ,获得积分10
2秒前
Christina发布了新的文献求助10
5秒前
LYY应助fifteen采纳,获得10
6秒前
donfern完成签到,获得积分10
10秒前
11秒前
Singularity应助elle采纳,获得10
11秒前
Uniibooy完成签到 ,获得积分10
13秒前
13秒前
violin发布了新的文献求助10
17秒前
shelly完成签到,获得积分10
17秒前
18秒前
duduwind发布了新的文献求助10
18秒前
稳重的若雁应助牛牛采纳,获得10
19秒前
爱静静应助老仙翁采纳,获得10
19秒前
violin完成签到,获得积分10
24秒前
wanci应助机灵自中采纳,获得200
25秒前
慕青应助会飞的姚二狗采纳,获得10
25秒前
26秒前
谦让的振家完成签到,获得积分10
27秒前
Ning_完成签到 ,获得积分10
30秒前
君莫惜给君莫惜的求助进行了留言
31秒前
黑色的白鲸完成签到,获得积分10
31秒前
elle完成签到,获得积分20
34秒前
35秒前
36秒前
36秒前
37秒前
东东完成签到 ,获得积分10
38秒前
充电宝应助牛牛采纳,获得10
38秒前
40秒前
tang发布了新的文献求助10
40秒前
Frank应助lexy采纳,获得10
42秒前
toptop应助番茄采纳,获得10
42秒前
碧蓝黑夜完成签到,获得积分20
43秒前
00发布了新的文献求助10
44秒前
科研小呆瓜完成签到,获得积分10
45秒前
爱静静应助老仙翁采纳,获得10
46秒前
香蕉觅云应助Diss采纳,获得10
47秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791184
关于积分的说明 7798192
捐赠科研通 2447619
什么是DOI,文献DOI怎么找? 1301996
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194