Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning

脑电图 光谱图 癫痫 模式识别(心理学) 人工智能 计算机科学 癫痫发作 短时傅里叶变换 二元分类 信号(编程语言) 深度学习 语音识别 支持向量机 数学 神经科学 心理学 傅里叶变换 傅里叶分析 数学分析 程序设计语言
作者
Muhammet Varlı,Hakan Yılmaz
出处
期刊:Journal of Computational Science [Elsevier BV]
卷期号:67: 101943-101943 被引量:49
标识
DOI:10.1016/j.jocs.2023.101943
摘要

Epilepsy stands out as one of the common neurological diseases. The neural activity of the brain is observed using electroencephalography (EEG), which allows the diagnosis of epilepsy disease. The aim of this study is to create a combined deep learning model that automatically detects epileptic seizure activity, detection of the epileptic region and classifies EEG signals by using images representing the time-frequency components of the time series EEG signal and numerical values of the raw EEG signals. In the study, 3 different public datasets, CHB-MIT, Bern-Barcelona and Bonn EEG records were used. This study presents a combined model using the time sequence of EEG signals and time-frequency-image transformations of time-dependent EEG signals. CWT and STFT methods were used to convert signals to images. Two models were created separately with the images created by CWT and STFT methods. In the Bonn dataset average accuracy rates of 99.07 %, 99.28 %, respectively, in binary classifications and 97.60 % and 98.56 %, respectively, in multiple classifications were obtained with scalogram and spectrogram images. In the Bern-Barcelona and CHB-MIT datasets, 95.46 % and 96.23 % accuracy rates were obtained, respectively. The data combinations brought together in 3 different combinations with the Bonn dataset were underwent to 8-fold cross validation and average accuracy rates of 99.21 % (± 0.56), 99.50 % (± 0.45), and 98.84 % (± 1.58) were obtained. The model we created can detect whether there is epileptic seizure activity in EEG data, detection of the epileptic region and classify EEG signals with a high success rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冉徐凤发布了新的文献求助10
刚刚
忙碌的数学人完成签到,获得积分10
1秒前
Liu完成签到,获得积分10
2秒前
加减乘除发布了新的文献求助10
2秒前
2秒前
Hello应助roclie采纳,获得10
3秒前
4秒前
锤子发布了新的文献求助10
4秒前
自由莺完成签到 ,获得积分10
4秒前
正直无极完成签到,获得积分10
5秒前
ym完成签到 ,获得积分10
5秒前
laura发布了新的文献求助10
5秒前
李健应助屹男采纳,获得10
8秒前
8秒前
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
Dada应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得30
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
拉拉完成签到,获得积分20
9秒前
CCL应助科研通管家采纳,获得40
9秒前
棋士应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
liaodongjun应助科研通管家采纳,获得10
9秒前
9秒前
棋士应助科研通管家采纳,获得10
9秒前
kyt发布了新的文献求助10
9秒前
ZZQ发布了新的文献求助10
10秒前
zxc完成签到,获得积分10
10秒前
sirisun完成签到,获得积分10
12秒前
CCL完成签到,获得积分10
12秒前
路口发布了新的文献求助10
13秒前
落寞臻完成签到,获得积分10
13秒前
敏尔完成签到,获得积分10
13秒前
从前慢发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500524
关于积分的说明 11099808
捐赠科研通 3230997
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869904
科研通“疑难数据库(出版商)”最低求助积分说明 801717