亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Divide and Conquer: A Flexible Deep Learning Strategy for Exploring Metabolic Heterogeneity from Mass Spectrometry Imaging Data

质谱成像 鉴定(生物学) 计算生物学 分割 分而治之算法 表型 计算机科学 人工智能 模式识别(心理学) 机器学习 化学 质谱法 生物 生物化学 植物 色谱法 算法 基因
作者
Lei Guo,Jiyang Dong,Xiangnan Xu,Zhichao Wu,Yinbin Zhang,Yongwei Wang,Pengfei Li,Zhi Tang,Chao Zhao,Zongwei Cai
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (3): 1924-1932 被引量:3
标识
DOI:10.1021/acs.analchem.2c04045
摘要

Research on metabolic heterogeneity provides an important basis for the study of the molecular mechanism of a disease and personalized treatment. The screening of metabolism-related sub-regions that affect disease development is essential for the more focused exploration on disease progress aberrant phenotypes, even carcinogenesis and metastasis. The mass spectrometry imaging (MSI) technique has distinct advantages to reveal the heterogeneity of an organism based on in situ molecular profiles. The challenge of heterogeneous analysis has been to perform an objective identification among biological tissues with different characteristics. By introducing the divide-and-conquer strategy to architecture design and application, we establish here a flexible unsupervised deep learning model, called divide-and-conquer (dc)-DeepMSI, for metabolic heterogeneity analysis from MSI data without prior knowledge of histology. dc-DeepMSI can be used to identify either spatially contiguous regions of interest (ROIs) or spatially sporadic ROIs by designing two specific modes, spat-contig and spat-spor. Comparison results on fetus mouse data demonstrate that the dc-DeepMSI outperforms state-of-the-art MSI segmentation methods. We demonstrate that the novel learning strategy successfully obtained sub-regions that are statistically linked to the invasion status and molecular phenotypes of breast cancer as well as organizing principles during developmental phase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助火星上含芙采纳,获得10
7秒前
19秒前
fanhuaxuejin完成签到 ,获得积分10
20秒前
23秒前
38秒前
冬雪丶消融完成签到,获得积分10
39秒前
HOPKINSON发布了新的文献求助10
43秒前
Paris完成签到 ,获得积分10
44秒前
真的想不出名儿了完成签到,获得积分20
47秒前
科目三应助ceeray23采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
鲁欢发布了新的文献求助10
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
imlaoji发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
zzzz完成签到 ,获得积分10
3分钟前
dylan发布了新的文献求助10
3分钟前
3分钟前
Criminology34应助娇气的亦云采纳,获得10
3分钟前
量子星尘发布了新的文献求助150
3分钟前
我能读懂文献完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
3分钟前
dylan完成签到 ,获得积分20
3分钟前
caca完成签到,获得积分0
3分钟前
3分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5031109
求助须知:如何正确求助?哪些是违规求助? 4265949
关于积分的说明 13298344
捐赠科研通 4074987
什么是DOI,文献DOI怎么找? 2228809
邀请新用户注册赠送积分活动 1237448
关于科研通互助平台的介绍 1162152