Stress-induced phase stability and optoelectronic property changes in cesium lead halide perovskites

卤化物 铅(地质) 材料科学 压力(语言学) 光电子学 相(物质) 化学 无机化学 地质学 语言学 地貌学 哲学 有机化学
作者
Jeong-Hoon Ju,Jianlin Chen,Wei Zhao,Junqi He,Zhuoyin Peng,Jian Chen
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:135 (17)
标识
DOI:10.1063/5.0197899
摘要

Over the past decade, the certified power conversion efficiency of perovskite solar cells (PSCs) has increased to 26.1%. However, phase instability originating from lattice strains, has limited their commercialization. Strains will inevitably be generated during the PSC fabrication and service process due to the “soft lattice” nature of halide perovskites. In particular, flexible PSCs are subjected to not only mechanical tensile and compressive loads, but also suffer from thermal stresses. In this study, strain-induced changes in the phase stability and the corresponding optoelectronic properties of CsPbI3−xBrx (CsPbI3, CsPbBr3, and CsPbI2Br) systems under tensile and compressive stresses were investigated using first-principles calculations. The results showed that compressive stresses reduce the bandgap value and increase the light absorption coefficient; thus, the optoelectronic performance is improved, whereas the light absorption coefficient decreases regardless of how the bandgap changes under tensile stresses. Moreover, under the same stress, the tensile strain value was twice that of the compressive strain, and the critical value of the transition from the cubic to tetragonal phase was lower, indicating that phase stability was worse under tensile stresses. Therefore, during the fabrication of PSCs, the tensile stress state should be adjusted to the compressive stress state, which is favorable for enhancing PSCs photovoltaic performance and phase stability. The results not only provide direct evidence of tensile and compressive strains influencing the phase stability and optoelectronic property changes in halide perovskites, but also highlight lattice-strain tailoring for the composition design, process optimization, and interface engineering of efficient and stable PSCs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Jasper应助zhuanchuanman采纳,获得10
刚刚
刚刚
顾矜应助灯灯采纳,获得10
刚刚
肖意涵完成签到,获得积分20
刚刚
盲目逛恋完成签到,获得积分10
刚刚
未央完成签到,获得积分10
1秒前
Akim应助小于采纳,获得10
1秒前
1秒前
1秒前
1秒前
yjdjskd123完成签到 ,获得积分10
1秒前
ilihe发布了新的文献求助10
2秒前
英俊的铭应助JJ采纳,获得10
2秒前
我是老大应助平常十八采纳,获得10
2秒前
2秒前
3秒前
打打应助风儿采纳,获得10
3秒前
3秒前
Frank应助郝郝采纳,获得10
3秒前
3秒前
qss8807完成签到,获得积分10
3秒前
Hello应助hby采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
无极微光应助贪玩的雅霜采纳,获得20
4秒前
expect发布了新的文献求助10
4秒前
4秒前
祝笑柳完成签到,获得积分10
4秒前
爱吃汉堡的yyq完成签到,获得积分10
4秒前
云升辰落完成签到,获得积分10
4秒前
Relauncher完成签到,获得积分10
5秒前
菠萝吹雪完成签到,获得积分10
5秒前
5秒前
陈勇杰发布了新的文献求助10
5秒前
白色大鸟发布了新的文献求助10
5秒前
Once完成签到,获得积分10
6秒前
椰椰完成签到,获得积分10
6秒前
英勇羿发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612728
求助须知:如何正确求助?哪些是违规求助? 4697738
关于积分的说明 14895443
捐赠科研通 4734234
什么是DOI,文献DOI怎么找? 2546654
邀请新用户注册赠送积分活动 1510660
关于科研通互助平台的介绍 1473494