Classification of lung cancer subtypes on CT images with synthetic pathological priors

先验概率 肺癌 人工智能 病态的 模式识别(心理学) 计算机断层摄影术 医学 数学 计算机科学 放射科 病理 贝叶斯概率
作者
Wentao Zhu,Yuan Jin,Gege Ma,Geng Chen,Jan Egger,Shaoting Zhang,Dimitris Metaxas
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:95: 103199-103199 被引量:5
标识
DOI:10.1016/j.media.2024.103199
摘要

The accurate diagnosis on pathological subtypes for lung cancer is of significant importance for the follow-up treatments and prognosis managements. In this paper, we propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on computed tomography (CT) images. Inspired by studies stating that cross-scale associations exist in the image patterns between the same case's CT images and its pathological images, we innovatively developed a pathological feature synthetic module (PFSM), which quantitatively maps cross-modality associations through deep neural networks, to derive the "gold standard" information contained in the corresponding pathological images from CT images. Additionally, we designed a radiological feature extraction module (RFEM) to directly acquire CT image information and integrated it with the pathological priors under an effective feature fusion framework, enabling the entire classification model to generate more indicative and specific pathologically related features and eventually output more accurate predictions. The superiority of the proposed model lies in its ability to self-generate hybrid features that contain multi-modality image information based on a single-modality input. To evaluate the effectiveness, adaptability, and generalization ability of our model, we performed extensive experiments on a large-scale multi-center dataset (i.e., 829 cases from three hospitals) to compare our model and a series of state-of-the-art (SOTA) classification models. The experimental results demonstrated the superiority of our model for lung cancer subtypes classification with significant accuracy improvements in terms of accuracy (ACC), area under the curve (AUC), positive predictive value (PPV) and F1-score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜嘉懿完成签到,获得积分20
刚刚
中和皇极完成签到,获得积分0
刚刚
ddd发布了新的文献求助10
1秒前
爆米花应助肖雪依采纳,获得10
1秒前
余南发布了新的文献求助10
2秒前
木木发布了新的文献求助50
3秒前
Ava应助达克赛德采纳,获得10
5秒前
兴奋的小虾米完成签到,获得积分10
5秒前
5秒前
爆米花应助Alioth采纳,获得10
6秒前
兮兮完成签到,获得积分10
6秒前
ljx完成签到 ,获得积分10
8秒前
8秒前
9秒前
科研通AI2S应助sakura采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
不吃香菜发布了新的文献求助100
10秒前
小药童完成签到 ,获得积分10
11秒前
山丘完成签到,获得积分10
11秒前
12秒前
12秒前
skywalker发布了新的文献求助10
13秒前
骑个柯基完成签到,获得积分10
14秒前
yyfdqms完成签到,获得积分10
15秒前
meat12应助hhh采纳,获得10
16秒前
16秒前
17秒前
18秒前
fujiaxing完成签到,获得积分10
20秒前
田一完成签到,获得积分10
20秒前
20秒前
22秒前
时召展发布了新的文献求助10
23秒前
不吃香菜完成签到,获得积分10
23秒前
桐桐应助mary采纳,获得10
25秒前
上官若男应助gggggd采纳,获得10
26秒前
覃雅丽发布了新的文献求助10
26秒前
dongdadada完成签到,获得积分10
26秒前
Andrea完成签到,获得积分10
27秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019