Computational model predicts patient outcomes in Luminal B breast cancer treated with endocrine therapy and CDK4/6 inhibition

乳腺癌 危险系数 肿瘤科 医学 置信区间 内科学 癌症 生物标志物 比例危险模型 阶段(地层学) 化疗 生物 古生物学 生物化学
作者
Leonard Schmiester,Fara Brasó‐Maristany,Blanca González‐Farré,Tomás Pascual,Joaquín Gavilá Gregori,Xavier Tekpli,Jürgen Geisler,Vessela N. Kristensen,Arnoldo Frigessi,Aleix Prat,Alvaro Köhn‐Luque
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
标识
DOI:10.1158/1078-0432.ccr-24-0244
摘要

Abstract Purpose: Development of a computational biomarker to predict, prior to treatment, the response to CDK4/6 inhibition (CDK4/6i) in combination with endocrine therapy in patients with breast cancer. Experimental design: A mechanistic mathematical model that accounts for protein signaling and drug mechanisms of action was developed and trained on extensive, publicly available data from breast cancer cell lines. The model was built to provide a patient-specific response score based on the expression of six genes (CCND1, CCNE1, ESR1, RB1, MYC and CDKN1A). The model was validated in five independent cohorts of 148 patients in total with early-stage or advanced breast cancer treated with endocrine therapy and CDK4/6i. Response was measured either by evaluating Ki67 levels and PAM50 risk of relapse (ROR) after neoadjuvant treatment or by evaluating progression-free survival (PFS). Results: The model showed significant association with patient´s outcomes in all five cohorts. The model predicted high Ki67 (area under the curve; AUC (95% confidence interval) of 0.80 (0.64 - 0.92), 0.81 (0.60 - 1.00) and 0.80 (0.65 - 0.93)) and high PAM50 ROR (AUC of 0.78 (0.64 - 0.89)). This observation was not obtained in patients treated with chemotherapy. In the other cohorts, patient stratification based on the model prediction was significantly associated with PFS (hazard ratio=2.92 (95% CI 1.08 - 7.86), p=0.034 and HR=2.16 (1.02 4.55), p=0.043). Conclusion: A mathematical modeling approach accurately predicts patient outcome following CDK4/6i plus endocrine therapy, which marks a step towards more personalized treatments in patients with Luminal B breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
打打应助美好斓采纳,获得10
1秒前
苏silence发布了新的文献求助10
1秒前
Felix发布了新的文献求助10
2秒前
鹿阿布发布了新的文献求助10
3秒前
乐乐应助科研小白采纳,获得10
4秒前
我是老大应助孟子采纳,获得10
5秒前
6秒前
Ava应助科研通管家采纳,获得10
6秒前
墩墩应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得30
7秒前
英姑应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
7秒前
Xieyusen发布了新的文献求助10
7秒前
斜阳正浓发布了新的文献求助10
9秒前
苏silence发布了新的文献求助10
10秒前
深情安青应助Mrmao0213采纳,获得10
13秒前
阿北发布了新的文献求助20
13秒前
14秒前
14秒前
15秒前
CC柚完成签到,获得积分10
15秒前
16秒前
molotov发布了新的文献求助10
16秒前
小马甲应助唐唐采纳,获得10
17秒前
NexusExplorer应助CXS采纳,获得10
17秒前
海浪发布了新的文献求助10
19秒前
英俊的铭应助维尼采纳,获得10
19秒前
科研小白发布了新的文献求助10
20秒前
今后应助22222采纳,获得10
20秒前
苏silence发布了新的文献求助10
20秒前
善学以致用应助zhanyuji采纳,获得30
20秒前
孟子发布了新的文献求助10
21秒前
舒心钧完成签到 ,获得积分10
21秒前
怕孤单的幼荷完成签到 ,获得积分10
22秒前
dada发布了新的文献求助10
22秒前
24秒前
FashionBoy应助重要涔雨采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517