乳腺癌
危险系数
肿瘤科
医学
置信区间
内科学
癌症
生物标志物
比例危险模型
阶段(地层学)
化疗
生物
古生物学
生物化学
作者
Leonard Schmiester,Fara Brasó‐Maristany,Blanca González‐Farré,Tomás Pascual,Joaquín Gavilá Gregori,Xavier Tekpli,Jürgen Geisler,Vessela N. Kristensen,Arnoldo Frigessi,Aleix Prat,Alvaro Köhn‐Luque
标识
DOI:10.1158/1078-0432.ccr-24-0244
摘要
Abstract Purpose: Development of a computational biomarker to predict, prior to treatment, the response to CDK4/6 inhibition (CDK4/6i) in combination with endocrine therapy in patients with breast cancer. Experimental design: A mechanistic mathematical model that accounts for protein signaling and drug mechanisms of action was developed and trained on extensive, publicly available data from breast cancer cell lines. The model was built to provide a patient-specific response score based on the expression of six genes (CCND1, CCNE1, ESR1, RB1, MYC and CDKN1A). The model was validated in five independent cohorts of 148 patients in total with early-stage or advanced breast cancer treated with endocrine therapy and CDK4/6i. Response was measured either by evaluating Ki67 levels and PAM50 risk of relapse (ROR) after neoadjuvant treatment or by evaluating progression-free survival (PFS). Results: The model showed significant association with patient´s outcomes in all five cohorts. The model predicted high Ki67 (area under the curve; AUC (95% confidence interval) of 0.80 (0.64 - 0.92), 0.81 (0.60 - 1.00) and 0.80 (0.65 - 0.93)) and high PAM50 ROR (AUC of 0.78 (0.64 - 0.89)). This observation was not obtained in patients treated with chemotherapy. In the other cohorts, patient stratification based on the model prediction was significantly associated with PFS (hazard ratio=2.92 (95% CI 1.08 - 7.86), p=0.034 and HR=2.16 (1.02 4.55), p=0.043). Conclusion: A mathematical modeling approach accurately predicts patient outcome following CDK4/6i plus endocrine therapy, which marks a step towards more personalized treatments in patients with Luminal B breast cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI