Development and challenges of object detection: A survey

计算机科学 人工智能 对象(语法) 计算机视觉
作者
Zonghui Li,Yongsheng Dong,Longchao Shen,Ya‐Feng Liu,Yuanhua Pei,Haotian Yang,Lintao Zheng,Jinwen Ma
出处
期刊:Neurocomputing [Elsevier]
卷期号:598: 128102-128102 被引量:31
标识
DOI:10.1016/j.neucom.2024.128102
摘要

Object detection is a basic vision task that accompanies people's daily lives all the time. The development of object detection technology has experienced an evolution from traditional-based algorithms to deep learning-based algorithms, which has made a qualitative leap in both detection accuracy and detection speed. With the advancement of deep learning, object detection techniques are increasingly becoming a part of everyday life, with the YOLO series of algorithms being extensively applied in various industries. In this paper, we initially present the frequently utilized datasets and evaluation criteria for object detection. Subsequently, we delve into the evolution of traditional object detection algorithms, highlighting two-stage and one-stage approaches through illustrative examples of classical methods. We also conduct a comprehensive summary and analysis of the detection results obtained by these methods. In addition, we introduce object detection applications in daily life, as well as the importance and some difficulties of these applications. Finally, we analyse and summarise the difficulties and challenges facing the task of object detection, and we look forward to the future development direction of object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xixi发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
黄姗姗完成签到,获得积分10
2秒前
小二郎应助霁故采纳,获得10
2秒前
小太阳完成签到,获得积分10
3秒前
3秒前
TMAC完成签到,获得积分10
3秒前
ding应助别说话采纳,获得10
3秒前
汉堡包应助吃人陈采纳,获得30
4秒前
科研通AI6应助ccy采纳,获得10
4秒前
4秒前
乐乐应助Chou采纳,获得10
4秒前
Moislad发布了新的文献求助10
4秒前
5秒前
丰知然应助文献荒采纳,获得10
5秒前
5秒前
可爱香芦发布了新的文献求助10
6秒前
8秒前
diegomht完成签到,获得积分10
8秒前
asasd发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
刘群发布了新的文献求助30
9秒前
9秒前
tigger发布了新的文献求助10
10秒前
teriteri完成签到,获得积分10
10秒前
11秒前
cyh发布了新的文献求助10
12秒前
12秒前
12秒前
浮游应助老子就是杀猪的采纳,获得10
13秒前
包容乐荷完成签到,获得积分10
14秒前
在水一方应助小太阳采纳,获得30
14秒前
专一的小馒头完成签到,获得积分10
14秒前
14秒前
14秒前
若水完成签到,获得积分10
14秒前
优美紫槐发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577756
求助须知:如何正确求助?哪些是违规求助? 4662789
关于积分的说明 14743583
捐赠科研通 4603478
什么是DOI,文献DOI怎么找? 2526478
邀请新用户注册赠送积分活动 1496172
关于科研通互助平台的介绍 1465573