Development and challenges of object detection: A survey

计算机科学 人工智能 对象(语法) 计算机视觉
作者
Zonghui Li,Yongsheng Dong,Longchao Shen,Ya‐Feng Liu,Yuanhua Pei,Haotian Yang,Lintao Zheng,Jinwen Ma
出处
期刊:Neurocomputing [Elsevier]
卷期号:598: 128102-128102 被引量:31
标识
DOI:10.1016/j.neucom.2024.128102
摘要

Object detection is a basic vision task that accompanies people's daily lives all the time. The development of object detection technology has experienced an evolution from traditional-based algorithms to deep learning-based algorithms, which has made a qualitative leap in both detection accuracy and detection speed. With the advancement of deep learning, object detection techniques are increasingly becoming a part of everyday life, with the YOLO series of algorithms being extensively applied in various industries. In this paper, we initially present the frequently utilized datasets and evaluation criteria for object detection. Subsequently, we delve into the evolution of traditional object detection algorithms, highlighting two-stage and one-stage approaches through illustrative examples of classical methods. We also conduct a comprehensive summary and analysis of the detection results obtained by these methods. In addition, we introduce object detection applications in daily life, as well as the importance and some difficulties of these applications. Finally, we analyse and summarise the difficulties and challenges facing the task of object detection, and we look forward to the future development direction of object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
主旋律发布了新的文献求助10
1秒前
求学关注了科研通微信公众号
1秒前
知性的幼晴完成签到,获得积分10
2秒前
会发光的小叶子完成签到,获得积分10
2秒前
小崔完成签到,获得积分20
2秒前
小小鱼发布了新的文献求助10
2秒前
小番茄完成签到 ,获得积分10
3秒前
彭于晏应助坦率灵煌采纳,获得10
3秒前
Yuliu发布了新的文献求助10
3秒前
Yuliu发布了新的文献求助10
4秒前
哈哈哈完成签到,获得积分10
4秒前
4秒前
ghkjl应助丘丘采纳,获得10
4秒前
5秒前
饱满衬衫发布了新的文献求助10
5秒前
7秒前
7秒前
7秒前
英俊的铭应助大鹏采纳,获得10
7秒前
娜娜子完成签到 ,获得积分10
8秒前
8秒前
PA发布了新的文献求助30
9秒前
在水一方应助仰泳鲫鱼采纳,获得10
10秒前
yyy发布了新的文献求助10
10秒前
彭于晏应助TBHP采纳,获得10
11秒前
12秒前
13秒前
Yuliu发布了新的文献求助10
14秒前
mascot0111完成签到,获得积分10
15秒前
wy发布了新的文献求助10
15秒前
15秒前
17秒前
17秒前
17秒前
17秒前
18秒前
18秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627261
求助须知:如何正确求助?哪些是违规求助? 4713332
关于积分的说明 14961607
捐赠科研通 4784189
什么是DOI,文献DOI怎么找? 2554779
邀请新用户注册赠送积分活动 1516304
关于科研通互助平台的介绍 1476657