Development and challenges of object detection: A survey

计算机科学 人工智能 对象(语法) 计算机视觉
作者
Zonghui Li,Yongsheng Dong,Longchao Shen,Ya‐Feng Liu,Yuanhua Pei,Haotian Yang,Lintao Zheng,Jinwen Ma
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:598: 128102-128102 被引量:8
标识
DOI:10.1016/j.neucom.2024.128102
摘要

Object detection is a basic vision task that accompanies people's daily lives all the time. The development of object detection technology has experienced an evolution from traditional-based algorithms to deep learning-based algorithms, which has made a qualitative leap in both detection accuracy and detection speed. With the advancement of deep learning, object detection techniques are increasingly becoming a part of everyday life, with the YOLO series of algorithms being extensively applied in various industries. In this paper, we initially present the frequently utilized datasets and evaluation criteria for object detection. Subsequently, we delve into the evolution of traditional object detection algorithms, highlighting two-stage and one-stage approaches through illustrative examples of classical methods. We also conduct a comprehensive summary and analysis of the detection results obtained by these methods. In addition, we introduce object detection applications in daily life, as well as the importance and some difficulties of these applications. Finally, we analyse and summarise the difficulties and challenges facing the task of object detection, and we look forward to the future development direction of object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助MingqingFang采纳,获得10
3秒前
3秒前
jungle完成签到 ,获得积分10
3秒前
去追完成签到 ,获得积分10
3秒前
Cloud完成签到 ,获得积分10
3秒前
影子发布了新的文献求助10
5秒前
6秒前
王子安应助科研通管家采纳,获得10
6秒前
猪猪hero应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
王子安应助科研通管家采纳,获得10
6秒前
6秒前
云染完成签到 ,获得积分10
7秒前
roy发布了新的文献求助10
8秒前
酷波er应助yiryir采纳,获得10
8秒前
李爱国应助善木兰采纳,获得10
10秒前
10秒前
梅子发布了新的文献求助10
10秒前
权思远发布了新的文献求助10
11秒前
牛文文发布了新的文献求助10
15秒前
15秒前
权思远完成签到,获得积分10
16秒前
梅子完成签到,获得积分10
17秒前
18秒前
英姑应助上好佳采纳,获得10
19秒前
温婉的香氛完成签到 ,获得积分10
20秒前
yiryir发布了新的文献求助10
20秒前
林林发布了新的文献求助10
21秒前
善学以致用应助红领巾klj采纳,获得10
21秒前
俭朴新之完成签到 ,获得积分10
22秒前
qyn1234566发布了新的文献求助20
23秒前
23秒前
封闭货车完成签到,获得积分10
24秒前
Alicyclobacillus完成签到,获得积分10
24秒前
善木兰发布了新的文献求助10
26秒前
27秒前
28秒前
31秒前
上好佳发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988997
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253520
捐赠科研通 3269928
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068