褪黑素
荧光
碳纤维
材料科学
化学
纳米技术
分析化学(期刊)
环境化学
物理
内科学
复合材料
医学
光学
复合数
作者
Mengjun Wang,Xiaojun Luo,Minghang Jiang,Liyun Zhang,Qian Zhou,Caijun Wu,Yi He
标识
DOI:10.1016/j.saa.2024.124699
摘要
The identification and quantification of melatonin (MT) are crucial for early diagnosis of disorders associated with circadian rhythm disruption. Herein, novel blue-emissive carbon dots (BCDs) were synthesized through an improved hydrothermal treatment using serine and malic acid as reductant and carbon source. The excellent optical properties of the as-obtained BCDs were used for ratiometric sensing by strategically constructing a MT sensing system integrating BCDs with C3N4 nanosheets loaded with platinum/ruthenium nanoparticles (PtRu/CN). In this system, H2O2 activated the peroxidase-like activity of PtRu/CN to generate •OH and 1O2 for oxidizing the colorless o-phenylenediamine (OPD) into yellow 2,3-diaminophenazine (DAP) with fluorescence emission at 565 nm. Concurrently, the fluorescence emission of BCDs at 439 nm was quenched by the generated DAP via the static quenching and inner filter effect (IFE) process. However, MT rapidly scavenged the generated free radicals to reverse the ratio fluorescence signal. The developed BCDs/PtRu/CN/OPD/H2O2 sensing platform enabled quantitative analysis of MT at concentrations ranging from 0.06 to 600 μmol/L with a low detection limit of 23.56 nmol/L. Moreover, smartphone-based RGB sensing of MT was successfully developed for rapid visualization and portable processing. More broadly, novel insights into the preparation of carbon dots with sensitive fluorescence sensing properties were presented, promising for future considerations.
科研通智能强力驱动
Strongly Powered by AbleSci AI