重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Smartphone application for artificial intelligence‐based evaluation of stool state during bowel preparation before colonoscopy

医学 结肠镜检查 肠道准备 置信区间 前瞻性队列研究 泻药 胃肠病学 内科学 结直肠癌 癌症
作者
Atsushi Inaba,Kensuke Shinmura,Hiroki Matsuzaki,Nobuyoshi Takeshita,Masashi Wakabayashi,Hironori Sunakawa,Keiichiro Nakajo,Tatsuro Murano,Tomohiro Kadota,Hiroaki Ikematsu,Tomonori Yano
出处
期刊:Digestive Endoscopy [Wiley]
被引量:3
标识
DOI:10.1111/den.14827
摘要

Objectives Colonoscopy (CS) is an important screening method for the early detection and removal of precancerous lesions. The stool state during bowel preparation (BP) should be properly evaluated to perform CS with sufficient quality. This study aimed to develop a smartphone application (app) with an artificial intelligence (AI) model for stool state evaluation during BP and to investigate whether the use of the app could maintain an adequate quality of CS. Methods First, stool images were collected in our hospital to develop the AI model and were categorized into grade 1 (solid or muddy stools), grade 2 (cloudy watery stools), and grade 3 (clear watery stools). The AI model for stool state evaluation (grades 1–3) was constructed and internally verified using the cross‐validation method. Second, a prospective study was conducted on the quality of CS using the app in our hospital. The primary end‐point was the proportion of patients who achieved Boston Bowel Preparation Scale (BBPS) ≥6 among those who successfully used the app. Results The AI model showed mean accuracy rates of 90.2%, 65.0%, and 89.3 for grades 1, 2, and 3, respectively. The prospective study enrolled 106 patients and revealed that 99.0% (95% confidence interval 95.3–99.9%) of patients achieved a BBPS ≥6. Conclusion The proportion of patients with BBPS ≥6 during CS using the developed app exceeded the set expected value. This app could contribute to the performance of high‐quality CS in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助包容翰采纳,获得10
刚刚
木木木木发布了新的文献求助30
刚刚
1秒前
1秒前
是多少发布了新的文献求助10
1秒前
1秒前
丘比特应助可靠月亮采纳,获得10
2秒前
牛与马完成签到,获得积分10
2秒前
qw1完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
3秒前
领导范儿应助最最采纳,获得10
4秒前
iNk应助炙热觅海采纳,获得20
4秒前
4秒前
阿斯顿发广告完成签到,获得积分10
5秒前
Ava应助yzy采纳,获得10
5秒前
sherrycofe完成签到,获得积分10
5秒前
jhfz完成签到,获得积分10
5秒前
阿海的发布了新的文献求助10
6秒前
英吉利25发布了新的文献求助10
6秒前
甜橙汁发布了新的文献求助10
6秒前
施宇宙发布了新的文献求助30
6秒前
小杨完成签到,获得积分10
6秒前
森林木完成签到,获得积分10
7秒前
7秒前
领导范儿应助4123采纳,获得10
7秒前
默默的斑马完成签到,获得积分10
8秒前
8秒前
moxuyio发布了新的文献求助10
8秒前
是多少完成签到,获得积分10
9秒前
10秒前
陈平安完成签到 ,获得积分10
11秒前
细心的寒天关注了科研通微信公众号
11秒前
bob完成签到,获得积分10
11秒前
zcx发布了新的文献求助10
12秒前
13秒前
kaiee发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466510
求助须知:如何正确求助?哪些是违规求助? 4570363
关于积分的说明 14324919
捐赠科研通 4496890
什么是DOI,文献DOI怎么找? 2463583
邀请新用户注册赠送积分活动 1452557
关于科研通互助平台的介绍 1427545