Mime: A flexible machine-learning framework to construct and visualize models for clinical characteristics prediction and feature selection

构造(python库) 特征选择 选择(遗传算法) 特征(语言学) 计算机科学 机器学习 人工智能 过程(计算) 程序设计语言 哲学 语言学 操作系统
作者
Hongwei Liu,Wei Zhang,Yihao Zhang,Abraham Ayodeji Adegboro,Deborah Oluwatosin Fasoranti,Luohuan Dai,Zhouyang Pan,Hongyi Liu,Yi Xiong,Wang Li,Kang Peng,Siyi Wanggou,Xuejun Li
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:23: 2798-2810 被引量:2
标识
DOI:10.1016/j.csbj.2024.06.035
摘要

The widespread use of high-throughput sequencing technologies has revolutionized the understanding of biology and cancer heterogeneity. Recently, several machine-learning models based on transcriptional data have been developed to accurately predict patients' outcome and clinical response. However, an open-source R package covering state-of-the-art machine-learning algorithms for user-friendly access has yet to be developed. Thus, we proposed a flexible computational framework to construct a machine learning-based integration model with elegant performance (Mime). Mime streamlines the process of developing predictive models with high accuracy, leveraging complex datasets to identify critical genes associated with prognosis. An in silico combined model based on de novo PIEZO1-associated signatures constructed by Mime demonstrated high accuracy in predicting the outcomes of patients compared with other published models. Furthermore, the PIEZO1-associated signatures could also precisely infer immunotherapy response by applying different algorithms in Mime. Finally, SDC1 selected from the PIEZO1-associated signatures demonstrated high potential as a glioma target. Taken together, our package provides a user-friendly solution for constructing machine learning-based integration models and will be greatly expanded to provide valuable insights into current fields. The Mime package is available on GitHub (https://github.com/l-magnificence/Mime).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HUYUE完成签到 ,获得积分10
刚刚
云锋完成签到,获得积分10
刚刚
奋斗战斗机完成签到,获得积分10
1秒前
SYLH应助干秋白采纳,获得10
1秒前
极意完成签到 ,获得积分10
2秒前
左友铭发布了新的文献求助10
2秒前
2秒前
2秒前
爱听歌雨真完成签到,获得积分10
3秒前
3秒前
Amai发布了新的文献求助20
4秒前
酷酷凤灵发布了新的文献求助10
4秒前
5秒前
风雨1210完成签到,获得积分10
5秒前
抗压兔完成签到 ,获得积分10
5秒前
chillin发布了新的文献求助10
5秒前
阳尧发布了新的文献求助10
6秒前
天天快乐应助troubadourelf采纳,获得10
6秒前
勤恳慕蕊发布了新的文献求助10
7秒前
7秒前
kxy完成签到,获得积分10
10秒前
10秒前
婧婧完成签到 ,获得积分10
10秒前
11秒前
12秒前
左友铭完成签到 ,获得积分10
12秒前
sweetbearm应助通~采纳,获得10
12秒前
AKLIZE完成签到,获得积分10
12秒前
刘大妮完成签到,获得积分10
13秒前
clean完成签到,获得积分20
14秒前
Lucas发布了新的文献求助10
14秒前
14秒前
朴实以松发布了新的文献求助10
14秒前
感谢橘子转发科研通微信,获得积分50
14秒前
围炉煮茶完成签到,获得积分10
15秒前
15秒前
云锋发布了新的文献求助10
16秒前
兴奋的问旋应助务实盼海采纳,获得10
16秒前
李秋静发布了新的文献求助10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794