李普希茨连续性
指数稳定性
理论(学习稳定性)
控制理论(社会学)
噪音(视频)
人工神经网络
应用数学
数学
指数函数
数学分析
计算机科学
物理
人工智能
非线性系统
机器学习
控制(管理)
量子力学
图像(数学)
作者
Shuo Ma,Jiangman Li,Ruonan Liu,Qiang Li
标识
DOI:10.1007/s11063-024-11663-4
摘要
Abstract In this paper, the exponential stability issue of stochastic impulsive neutral neural networks driven by Lévy noise is explored. By resorting to the Lyapunov-Krasovskii function that involves neutral time-delay components, the properties of the Lévy process, as well as various inequality approaches, some sufficient exponential stability criteria in non-Lipschitz cases are obtained. Besides, the achieved results depend on the time-delay, noise intensity, and impulse factor. At the end of the paper, two numerical examples with simulations are presented to demonstrate the effectiveness and feasibility of the addressed results
科研通智能强力驱动
Strongly Powered by AbleSci AI