Bayesian optimization based extreme gradient boosting and GPR time-frequency features for the recognition of moisture damage in asphalt pavement

探地雷达 贝叶斯概率 水分 Boosting(机器学习) 计算机科学 人工智能 环境科学 模式识别(心理学) 地质学 气象学 地理 雷达 电信
作者
Hongwei Li,Jun Zhang,Xiaokun Yang,Min Ye,Wentao Jiang,Jing Gong,Yaogang Tian,Liang Zhao,Weitian Wang,Zhiwei Xu
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:434: 136675-136675 被引量:1
标识
DOI:10.1016/j.conbuildmat.2024.136675
摘要

Moisture damage is one of the major defects in asphalt pavement, and will evolve into potholes in a short time which will affect traffic safety. Ground Penetrating Radar (GPR) is an effective non-destructive testing (NDT) method for detecting moisture damage but its data explanation replies on human experience and subjects to labor intensive. To address this issue, an automatic detection method based on extreme gradient boosting (XGBoost) combined with Bayesian hyper-parameter optimization (BHPO) was proposed to detect moisture damage area from GPR traces. High frequency GPR antenna with 2.3 GHz was used to detect the moisture damage area from simulation, laboratory and field tests, and moisture damage dataset with 7960 traces was collected. Thirty time-frequency parameters were extracted from each GPR trace, normalized to unify the three data source, and then optimized into 12 sensitive parameters by feature importance method. These 12 parameters were used to build the recognition model with XGBoost, and the model tuning parameters were optimized by BHPO. To obtain optimization model, random forest (RF) and artificial neural network (ANN) were also trained with BHPO, and compared with XGBoost model. The results indicate that performance of XGBoost model with BHPO achieves the highest accuracy and lowest time cost both in moisture damage and normal trace classification, the accuracies for moisture damage are XGBoost (96.9%) > ANN (95.6%) > RF (95.4%), respectively, and normal are XGBoost (96.5%) > RF (96.1%) and ANN (96.0%), respectively. On this basis, field tests were conducted by core samples, which verified the correct result of XGBoost model. Our method provides a swift and accurate method to locate subsurface targets directly from GPR signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风起发布了新的文献求助10
1秒前
VDC应助爱听歌笑寒采纳,获得30
1秒前
4秒前
Akim应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
5秒前
子车茗应助科研通管家采纳,获得30
5秒前
子车茗应助科研通管家采纳,获得30
5秒前
duanhuiyuan应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
子车茗应助科研通管家采纳,获得30
5秒前
5秒前
云里发布了新的文献求助10
5秒前
7秒前
可耐的毛衣完成签到,获得积分20
8秒前
藤椒辣鱼应助花语采纳,获得10
9秒前
9秒前
9秒前
请叫我风吹麦浪应助nana采纳,获得10
9秒前
TOUHOUU完成签到 ,获得积分10
9秒前
死狼也嚎叫完成签到 ,获得积分10
10秒前
吕佩昌发布了新的文献求助10
10秒前
10秒前
在水一方应助年轻的飞风采纳,获得10
11秒前
一口一个粽子完成签到 ,获得积分10
11秒前
科研的狗发布了新的文献求助20
11秒前
15秒前
17秒前
深情安青应助yinyiming采纳,获得10
18秒前
18秒前
123发布了新的文献求助20
19秒前
20秒前
20秒前
科研通AI2S应助123采纳,获得30
21秒前
wsqg123完成签到,获得积分10
21秒前
顾矜应助gy第一突破手采纳,获得10
22秒前
23秒前
JJ应助笙儿采纳,获得10
24秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433920
求助须知:如何正确求助?哪些是违规求助? 3031041
关于积分的说明 8940816
捐赠科研通 2719088
什么是DOI,文献DOI怎么找? 1491638
科研通“疑难数据库(出版商)”最低求助积分说明 689350
邀请新用户注册赠送积分活动 685511