Adaptive energy-based gradient methods for large-scale optimization and data-driven discovery of dynamical systems via neural networks

人工神经网络 计算机科学 动力系统理论 人工智能 最优控制 深度学习 机器学习 趋同(经济学) 随机优化 理论(学习稳定性) 水准点(测量) 数学优化 数学 物理 量子力学 大地测量学 地理 经济 经济增长
作者
Xuping Tian
标识
DOI:10.31274/td-20240617-16
摘要

Machine learning and data science have revolutionized numerous scientific and engineering domains, promising a renaissance in complex data analysis and understanding. This thesis addresses two critical challenges at the forefront of these fields: (1) developing efficient optimization methods for training large-scale machine learning models, and (2) the discovery of dynamical systems from observational data. To tackle the first challenge, we introduce a new family of gradient-based optimization methods. These methods employ an adaptive energy-based strategy, ensuring unconditional energy stability regardless of the step size (learning rate) value. We provide convergence analyses for both deterministic and stochastic settings, with particular emphasis placed on the SGEM (Stochastic Gradient with Energy and Momentum) method, notable for its incorporation of momentum acceleration. Experimental results on benchmark deep learning problems demonstrate SGEM's rapid convergence and superior generalization capabilities. Furthermore, we investigate the dynamic behavior of a deterministic variant of SGEM through the lens of limiting Ordinary Differential Equations (ODEs). Our results illuminate the impact of momentum and step size on the stability and convergence of discrete schemes. Addressing the second challenge, we propose a data-driven optimal control approach for learning system parameters. This approach is subsequently extended to encompass the learning of the entire governing function by incorporating neural network approximation into the framework. Specifically, we exemplify the data-driven optimal control approach by learning the parameters of the Susceptible-Exposed-Infectious-Recovered (SEIR) model from reported COVID-19 data. The Optimal Control Neural Networks (OCN) framework is demonstrated through its application to a gradient flow system. The training process of the neural networks is meticulously designed using the adjoint method alongside symplectic ODE solvers. Numerical experiments on several canonical systems validate the OCN framework. In summary, this research contributes to the advancement of both the theoretical understanding and practical applications of large-scale optimization in machine learning, as well as the data-driven discovery of dynamical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是小短腿的妹妹完成签到,获得积分20
刚刚
lily完成签到,获得积分10
刚刚
感谢有你发布了新的文献求助10
2秒前
wh2740完成签到,获得积分10
3秒前
SHAO应助可乐冰淇淋采纳,获得30
6秒前
6秒前
脑洞疼应助JUdy采纳,获得10
8秒前
何白发布了新的文献求助10
8秒前
Lu发布了新的文献求助10
9秒前
hugdoggy完成签到,获得积分10
11秒前
11秒前
桃子发布了新的文献求助30
14秒前
15秒前
Liufgui给风之星的求助进行了留言
15秒前
16秒前
Lucas应助桔子采纳,获得30
18秒前
JUdy发布了新的文献求助10
21秒前
15858833895发布了新的文献求助10
22秒前
许晓蝶完成签到,获得积分10
22秒前
花花完成签到 ,获得积分10
22秒前
wayne完成签到 ,获得积分10
25秒前
25秒前
hua完成签到,获得积分10
26秒前
可乐冰淇淋完成签到,获得积分10
27秒前
27秒前
贝湾完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
30秒前
水中鱼发布了新的文献求助10
31秒前
lin完成签到,获得积分10
32秒前
陌予完成签到 ,获得积分10
32秒前
33秒前
Fengliguantou发布了新的文献求助20
33秒前
桔子发布了新的文献求助30
33秒前
萨日呼完成签到,获得积分10
33秒前
彭栋完成签到,获得积分10
37秒前
Lu发布了新的文献求助10
37秒前
37秒前
42秒前
桔子完成签到,获得积分10
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105