Adaptive energy-based gradient methods for large-scale optimization and data-driven discovery of dynamical systems via neural networks

人工神经网络 计算机科学 动力系统理论 人工智能 最优控制 深度学习 机器学习 趋同(经济学) 随机优化 理论(学习稳定性) 水准点(测量) 数学优化 数学 物理 量子力学 大地测量学 地理 经济 经济增长
作者
Xuping Tian
标识
DOI:10.31274/td-20240617-16
摘要

Machine learning and data science have revolutionized numerous scientific and engineering domains, promising a renaissance in complex data analysis and understanding. This thesis addresses two critical challenges at the forefront of these fields: (1) developing efficient optimization methods for training large-scale machine learning models, and (2) the discovery of dynamical systems from observational data. To tackle the first challenge, we introduce a new family of gradient-based optimization methods. These methods employ an adaptive energy-based strategy, ensuring unconditional energy stability regardless of the step size (learning rate) value. We provide convergence analyses for both deterministic and stochastic settings, with particular emphasis placed on the SGEM (Stochastic Gradient with Energy and Momentum) method, notable for its incorporation of momentum acceleration. Experimental results on benchmark deep learning problems demonstrate SGEM's rapid convergence and superior generalization capabilities. Furthermore, we investigate the dynamic behavior of a deterministic variant of SGEM through the lens of limiting Ordinary Differential Equations (ODEs). Our results illuminate the impact of momentum and step size on the stability and convergence of discrete schemes. Addressing the second challenge, we propose a data-driven optimal control approach for learning system parameters. This approach is subsequently extended to encompass the learning of the entire governing function by incorporating neural network approximation into the framework. Specifically, we exemplify the data-driven optimal control approach by learning the parameters of the Susceptible-Exposed-Infectious-Recovered (SEIR) model from reported COVID-19 data. The Optimal Control Neural Networks (OCN) framework is demonstrated through its application to a gradient flow system. The training process of the neural networks is meticulously designed using the adjoint method alongside symplectic ODE solvers. Numerical experiments on several canonical systems validate the OCN framework. In summary, this research contributes to the advancement of both the theoretical understanding and practical applications of large-scale optimization in machine learning, as well as the data-driven discovery of dynamical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh1998发布了新的文献求助10
刚刚
酱紫完成签到,获得积分20
1秒前
道交法完成签到,获得积分10
1秒前
殷勤的沂发布了新的文献求助10
3秒前
Haho完成签到,获得积分10
3秒前
仙女的小可爱完成签到 ,获得积分10
4秒前
港岛妹妹应助net采纳,获得10
6秒前
科研通AI2S应助hegui采纳,获得10
8秒前
酱紫发布了新的文献求助20
8秒前
9秒前
10秒前
Drapple完成签到,获得积分10
10秒前
殷勤的沂完成签到,获得积分20
12秒前
12秒前
香蕉觅云应助Abelyang采纳,获得30
17秒前
尹静涵完成签到 ,获得积分10
18秒前
nxf发布了新的文献求助10
19秒前
陈富贵完成签到 ,获得积分10
23秒前
庞扬完成签到,获得积分20
25秒前
乐乐应助hhh1998采纳,获得10
27秒前
shizi发布了新的文献求助10
27秒前
zpli完成签到 ,获得积分10
29秒前
Akim应助热情的向松采纳,获得10
31秒前
Xincheng完成签到,获得积分10
32秒前
32秒前
33秒前
33秒前
33秒前
Faith完成签到 ,获得积分10
33秒前
TT发布了新的文献求助50
34秒前
35秒前
sue关闭了sue文献求助
36秒前
Emma完成签到,获得积分10
37秒前
38秒前
十一发布了新的文献求助10
38秒前
40秒前
顺利糜发布了新的文献求助10
43秒前
KD发布了新的文献求助10
44秒前
45秒前
DXM完成签到 ,获得积分10
48秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243893
求助须知:如何正确求助?哪些是违规求助? 2887776
关于积分的说明 8249778
捐赠科研通 2556393
什么是DOI,文献DOI怎么找? 1384529
科研通“疑难数据库(出版商)”最低求助积分说明 649877
邀请新用户注册赠送积分活动 625867