Adaptive energy-based gradient methods for large-scale optimization and data-driven discovery of dynamical systems via neural networks

人工神经网络 计算机科学 动力系统理论 人工智能 最优控制 深度学习 机器学习 趋同(经济学) 随机优化 理论(学习稳定性) 水准点(测量) 数学优化 数学 物理 量子力学 大地测量学 地理 经济 经济增长
作者
Xuping Tian
标识
DOI:10.31274/td-20240617-16
摘要

Machine learning and data science have revolutionized numerous scientific and engineering domains, promising a renaissance in complex data analysis and understanding. This thesis addresses two critical challenges at the forefront of these fields: (1) developing efficient optimization methods for training large-scale machine learning models, and (2) the discovery of dynamical systems from observational data. To tackle the first challenge, we introduce a new family of gradient-based optimization methods. These methods employ an adaptive energy-based strategy, ensuring unconditional energy stability regardless of the step size (learning rate) value. We provide convergence analyses for both deterministic and stochastic settings, with particular emphasis placed on the SGEM (Stochastic Gradient with Energy and Momentum) method, notable for its incorporation of momentum acceleration. Experimental results on benchmark deep learning problems demonstrate SGEM's rapid convergence and superior generalization capabilities. Furthermore, we investigate the dynamic behavior of a deterministic variant of SGEM through the lens of limiting Ordinary Differential Equations (ODEs). Our results illuminate the impact of momentum and step size on the stability and convergence of discrete schemes. Addressing the second challenge, we propose a data-driven optimal control approach for learning system parameters. This approach is subsequently extended to encompass the learning of the entire governing function by incorporating neural network approximation into the framework. Specifically, we exemplify the data-driven optimal control approach by learning the parameters of the Susceptible-Exposed-Infectious-Recovered (SEIR) model from reported COVID-19 data. The Optimal Control Neural Networks (OCN) framework is demonstrated through its application to a gradient flow system. The training process of the neural networks is meticulously designed using the adjoint method alongside symplectic ODE solvers. Numerical experiments on several canonical systems validate the OCN framework. In summary, this research contributes to the advancement of both the theoretical understanding and practical applications of large-scale optimization in machine learning, as well as the data-driven discovery of dynamical systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱撒娇的文博完成签到,获得积分10
刚刚
1秒前
NexusExplorer应助llyy采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
大胆寒风发布了新的文献求助10
3秒前
火星上的冷霜完成签到,获得积分10
3秒前
3秒前
千葉发布了新的文献求助10
3秒前
风吹麦田应助一灯大师采纳,获得30
3秒前
3秒前
龙仁发布了新的文献求助10
3秒前
小吴发布了新的文献求助10
4秒前
4秒前
JiegeSCI完成签到,获得积分10
4秒前
Jonathan发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
科研机器完成签到,获得积分10
6秒前
风清扬发布了新的文献求助50
8秒前
8秒前
Clara完成签到,获得积分10
8秒前
小李应助qqqq采纳,获得10
8秒前
靓丽的魔镜完成签到,获得积分10
8秒前
Sommer完成签到 ,获得积分10
9秒前
hyodong发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
昵称待定完成签到,获得积分10
9秒前
胡清美完成签到,获得积分20
9秒前
碎米花完成签到 ,获得积分10
9秒前
向磊发布了新的文献求助10
9秒前
10秒前
上官若男应助cjh采纳,获得10
10秒前
ddd完成签到,获得积分10
10秒前
10秒前
10秒前
Hanyi完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728463
求助须知:如何正确求助?哪些是违规求助? 5312850
关于积分的说明 15314159
捐赠科研通 4875631
什么是DOI,文献DOI怎么找? 2618899
邀请新用户注册赠送积分活动 1568458
关于科研通互助平台的介绍 1525134