已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptive energy-based gradient methods for large-scale optimization and data-driven discovery of dynamical systems via neural networks

人工神经网络 计算机科学 动力系统理论 人工智能 最优控制 深度学习 机器学习 趋同(经济学) 随机优化 理论(学习稳定性) 水准点(测量) 数学优化 数学 物理 量子力学 大地测量学 地理 经济 经济增长
作者
Xuping Tian
标识
DOI:10.31274/td-20240617-16
摘要

Machine learning and data science have revolutionized numerous scientific and engineering domains, promising a renaissance in complex data analysis and understanding. This thesis addresses two critical challenges at the forefront of these fields: (1) developing efficient optimization methods for training large-scale machine learning models, and (2) the discovery of dynamical systems from observational data. To tackle the first challenge, we introduce a new family of gradient-based optimization methods. These methods employ an adaptive energy-based strategy, ensuring unconditional energy stability regardless of the step size (learning rate) value. We provide convergence analyses for both deterministic and stochastic settings, with particular emphasis placed on the SGEM (Stochastic Gradient with Energy and Momentum) method, notable for its incorporation of momentum acceleration. Experimental results on benchmark deep learning problems demonstrate SGEM's rapid convergence and superior generalization capabilities. Furthermore, we investigate the dynamic behavior of a deterministic variant of SGEM through the lens of limiting Ordinary Differential Equations (ODEs). Our results illuminate the impact of momentum and step size on the stability and convergence of discrete schemes. Addressing the second challenge, we propose a data-driven optimal control approach for learning system parameters. This approach is subsequently extended to encompass the learning of the entire governing function by incorporating neural network approximation into the framework. Specifically, we exemplify the data-driven optimal control approach by learning the parameters of the Susceptible-Exposed-Infectious-Recovered (SEIR) model from reported COVID-19 data. The Optimal Control Neural Networks (OCN) framework is demonstrated through its application to a gradient flow system. The training process of the neural networks is meticulously designed using the adjoint method alongside symplectic ODE solvers. Numerical experiments on several canonical systems validate the OCN framework. In summary, this research contributes to the advancement of both the theoretical understanding and practical applications of large-scale optimization in machine learning, as well as the data-driven discovery of dynamical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是多多呀完成签到 ,获得积分10
3秒前
不知道完成签到 ,获得积分10
5秒前
北辰zdx完成签到,获得积分10
5秒前
山东老铁完成签到,获得积分10
14秒前
阿拉哈哈笑完成签到,获得积分10
16秒前
有趣的桃完成签到,获得积分10
17秒前
土豪的洋葱完成签到,获得积分10
20秒前
映泧发布了新的文献求助10
22秒前
23秒前
Bowman完成签到,获得积分10
24秒前
123完成签到,获得积分10
26秒前
贰壹完成签到 ,获得积分10
26秒前
今后应助科研通管家采纳,获得10
26秒前
NSS发布了新的文献求助10
26秒前
GingerF应助科研通管家采纳,获得100
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
华仔应助科研通管家采纳,获得10
26秒前
阳光的紫丝完成签到,获得积分10
28秒前
千纸鹤完成签到 ,获得积分10
30秒前
31秒前
32秒前
敬业乐群完成签到,获得积分10
33秒前
34秒前
39秒前
42秒前
002完成签到,获得积分10
43秒前
董羽佳完成签到,获得积分10
45秒前
咪咪完成签到 ,获得积分10
47秒前
50秒前
漂亮糖豆完成签到 ,获得积分10
51秒前
映泧完成签到,获得积分10
52秒前
53秒前
嗯对完成签到 ,获得积分10
57秒前
李小小发布了新的文献求助10
58秒前
1分钟前
小贾爱喝冰美式完成签到 ,获得积分10
1分钟前
圈圈完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290974
求助须知:如何正确求助?哪些是违规求助? 4442178
关于积分的说明 13829448
捐赠科研通 4325091
什么是DOI,文献DOI怎么找? 2373956
邀请新用户注册赠送积分活动 1369349
关于科研通互助平台的介绍 1333483