Coarse–Fine Combined Bridge Crack Detection Based on Deep Learning

桥(图论) 分割 计算机科学 人工智能 结构工程 模式识别(心理学) 工程类 医学 内科学
作者
Kaifeng Ma,Mengshu Hao,Meng Xiang,Jinping Liu,Junzhen Meng,Yabing Xuan
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (12): 5004-5004
标识
DOI:10.3390/app14125004
摘要

The crack detection of concrete bridges is an important link in the safety evaluation of bridge structures, and the rapid and accurate identification and detection of bridge cracks is a prerequisite for ensuring the safety and long-term stable use of bridges. To solve the incomplete crack detection and segmentation caused by the complex background and small proportion in the actual bridge crack images, this paper proposes a coarse–fine combined bridge crack detection method of “double detection + single segmentation” based on deep learning. To validate the effect and practicality of fine crack detection, images of old civil bridges and viaduct bridges against a complex background and images of a bridge crack against a simple background are used as datasets. You Only Look Once V5(x) (YOLOV5(x)) was preferred as the object detection network model (ODNM) to perform initial and fine detection of bridge cracks, respectively. Using U-Net as the optimal semantic segmentation network model (SSNM), the crack detection results are accurately segmented for fine crack detection. The test results showed that the initial crack detection using YOLOV5(x) was more comprehensive and preserved the original shape of bridge cracks. Second, based on the initial detection, YOLOV5(x) was adopted for fine crack detection, which can determine the location and shape of cracks more carefully and accurately. Finally, the U-Net model was used to segment the accurately detected cracks and achieved a maximum accuracy (AC) value of 98.37%. The experiment verifies the effectiveness and accuracy of this method, which not only provides a faster and more accurate method for fine detection of bridge cracks but also provides technical support for future automated detection and preventive maintenance of bridge structures and has practical value for bridge crack detection engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单的笑蓝完成签到 ,获得积分10
1秒前
1秒前
洁仔发布了新的文献求助10
1秒前
gaiaaxy完成签到,获得积分20
2秒前
3秒前
王予曦完成签到,获得积分10
4秒前
科研通AI2S应助俊逸凌雪采纳,获得10
4秒前
5秒前
5秒前
云鹤完成签到 ,获得积分10
6秒前
6秒前
大佬发布了新的文献求助10
9秒前
逝水无痕发布了新的文献求助10
9秒前
9秒前
唠叨的曼雁发布了新的文献求助100
11秒前
12秒前
优秀如雪完成签到,获得积分20
14秒前
韩芸姣发布了新的文献求助10
15秒前
优美葵阴完成签到,获得积分20
17秒前
调研昵称发布了新的文献求助10
18秒前
子车茗应助称心的胡萝卜采纳,获得10
19秒前
20秒前
饭团0814完成签到,获得积分10
21秒前
勤劳锦程完成签到 ,获得积分10
21秒前
谨慎的睫毛膏完成签到,获得积分20
22秒前
王秋婷发布了新的文献求助10
23秒前
脑洞疼应助FAY采纳,获得10
24秒前
优美葵阴发布了新的文献求助10
24秒前
25秒前
乐乐应助dadasigua采纳,获得10
25秒前
唠叨的曼雁完成签到,获得积分10
26秒前
zxin完成签到,获得积分10
26秒前
Res_M发布了新的文献求助10
27秒前
Ava应助sanling采纳,获得60
28秒前
整齐新儿发布了新的文献求助10
31秒前
33秒前
34秒前
Kitty完成签到,获得积分10
35秒前
orixero应助整齐新儿采纳,获得10
35秒前
天天快乐应助整齐新儿采纳,获得10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459121
求助须知:如何正确求助?哪些是违规求助? 3053676
关于积分的说明 9037638
捐赠科研通 2742926
什么是DOI,文献DOI怎么找? 1504571
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694605