亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting the seismic ground-motion parameters: 3D physics-based numerical simulations combined with artificial neural networks

地震动 人工神经网络 基岩 衰减 地震学 加速度 峰值地面加速度 强地震动 地质学 计算机科学 物理 人工智能 经典力学 地貌学 光学
作者
Zhenning Ba,Linghui Lyu,Jingxuan Zhao,Yushan Zhang,Yu Wang
出处
期刊:Earthquake Spectra [SAGE Publishing]
标识
DOI:10.1177/87552930241255953
摘要

Typically, it is challenging to incorporate near-surface soils into 3D physics-based numerical simulations (PBSs) for ground-motion prediction. The low shear wave speed of near-surface soils, coupled with the complexity of the soil seismic response, poses significant difficulties. To overcome these limitations, a hybrid approach was proposed in this study, combining PBSs with artificial neural networks (ANNs). The essence of the hybrid method can be summarized as follows: (1) development of ANN models, establishing a strong-motion database, training the ANNs on it to predict the ground-motion parameters for East–West (EW), North–South (NS), and Vertical (UD) directions afterward; (2) establishment of 3D PBS model, obtaining the ground-motion parameters of the bedrock face corresponding to a certain shear wave speed; (3) application of the trained ANNs to predict the ground-motion parameters on the ground surface, taking the simulated results and related site parameters as inputs, and the outputs are peak ground acceleration (PGA) and 5% damped spectral accelerations (Sa) at different periods on the ground surface. In this study, ANN models were trained on a strong-motion database based on Kiban–Kyoshin Network (KiK-net). After several verifications of the ANN predictions, a case study of the 21 October 2016 M w 6.2 Central Tottori earthquake was conducted. In addition to the comparison with observations, the broadband (0.1–10 Hz) results of the hybrid method were also compared with the results that obtained by transfer function based on recorded data and Next Generation Attenuation (NGA)-West2 ground-motion prediction equations (GMPEs) to demonstrate the effectiveness and applicability of the proposed method. In addition, the distribution of Sa for four periods in simulated area was presented. The performance of the hybrid method for predicting broadband ground-motion characteristics was generally satisfactory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生命科学的第一推动力完成签到 ,获得积分10
3秒前
我的文献呢完成签到,获得积分10
11秒前
Anmaterchem1完成签到,获得积分10
15秒前
JamesPei应助高贵小兔子采纳,获得10
16秒前
量子星尘发布了新的文献求助10
20秒前
坦率完成签到,获得积分10
21秒前
only完成签到 ,获得积分10
24秒前
哪有人不疯完成签到,获得积分10
38秒前
打打应助白雪1996采纳,获得10
43秒前
芒果完成签到 ,获得积分10
51秒前
pass完成签到 ,获得积分10
56秒前
爆米花应助鳎mu采纳,获得10
59秒前
科研通AI2S应助guolong采纳,获得10
1分钟前
ljc完成签到 ,获得积分10
1分钟前
mashibeo完成签到,获得积分10
1分钟前
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
cc应助科研通管家采纳,获得20
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
yuuuu01发布了新的文献求助10
1分钟前
神外魔法师完成签到,获得积分10
1分钟前
Aloha完成签到,获得积分10
1分钟前
9778完成签到,获得积分10
1分钟前
1分钟前
9778发布了新的文献求助10
1分钟前
1分钟前
Hello应助Ddz采纳,获得10
1分钟前
1分钟前
Janice完成签到 ,获得积分10
1分钟前
白雪1996完成签到,获得积分10
1分钟前
科研人完成签到 ,获得积分10
1分钟前
1分钟前
白雪1996发布了新的文献求助10
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960024
求助须知:如何正确求助?哪些是违规求助? 3506229
关于积分的说明 11128439
捐赠科研通 3238225
什么是DOI,文献DOI怎么找? 1789582
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056