Predicting the seismic ground-motion parameters: 3D physics-based numerical simulations combined with artificial neural networks

地震动 人工神经网络 基岩 衰减 地震学 加速度 峰值地面加速度 强地震动 地质学 计算机科学 物理 人工智能 经典力学 地貌学 光学
作者
Zhenning Ba,Linghui Lyu,Jingxuan Zhao,Yushan Zhang,Yu Wang
出处
期刊:Earthquake Spectra [SAGE]
标识
DOI:10.1177/87552930241255953
摘要

Typically, it is challenging to incorporate near-surface soils into 3D physics-based numerical simulations (PBSs) for ground-motion prediction. The low shear wave speed of near-surface soils, coupled with the complexity of the soil seismic response, poses significant difficulties. To overcome these limitations, a hybrid approach was proposed in this study, combining PBSs with artificial neural networks (ANNs). The essence of the hybrid method can be summarized as follows: (1) development of ANN models, establishing a strong-motion database, training the ANNs on it to predict the ground-motion parameters for East–West (EW), North–South (NS), and Vertical (UD) directions afterward; (2) establishment of 3D PBS model, obtaining the ground-motion parameters of the bedrock face corresponding to a certain shear wave speed; (3) application of the trained ANNs to predict the ground-motion parameters on the ground surface, taking the simulated results and related site parameters as inputs, and the outputs are peak ground acceleration (PGA) and 5% damped spectral accelerations (Sa) at different periods on the ground surface. In this study, ANN models were trained on a strong-motion database based on Kiban–Kyoshin Network (KiK-net). After several verifications of the ANN predictions, a case study of the 21 October 2016 M w 6.2 Central Tottori earthquake was conducted. In addition to the comparison with observations, the broadband (0.1–10 Hz) results of the hybrid method were also compared with the results that obtained by transfer function based on recorded data and Next Generation Attenuation (NGA)-West2 ground-motion prediction equations (GMPEs) to demonstrate the effectiveness and applicability of the proposed method. In addition, the distribution of Sa for four periods in simulated area was presented. The performance of the hybrid method for predicting broadband ground-motion characteristics was generally satisfactory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江洋小偷完成签到,获得积分10
1秒前
1秒前
互助遵法尚德应助miemie采纳,获得10
1秒前
2秒前
漂亮的倒挂金钩完成签到,获得积分10
2秒前
OVERLXRD完成签到,获得积分10
2秒前
果果完成签到,获得积分20
3秒前
3秒前
充电宝应助无聊先知采纳,获得10
4秒前
小黎完成签到,获得积分10
4秒前
齐俞如发布了新的文献求助10
4秒前
陈嘉木完成签到,获得积分10
4秒前
4秒前
5秒前
小小发布了新的文献求助10
6秒前
6秒前
7秒前
相知完成签到,获得积分20
7秒前
研友_Z1Xa0n发布了新的文献求助10
8秒前
8秒前
9秒前
苏菲的金发哈尔完成签到,获得积分10
9秒前
particularc完成签到,获得积分10
9秒前
耍酷激光豆完成签到,获得积分10
9秒前
小于发布了新的文献求助10
10秒前
10秒前
碗碗完成签到,获得积分20
11秒前
lixiao应助azdax采纳,获得10
11秒前
小夏咕噜发布了新的文献求助10
11秒前
susong987完成签到,获得积分10
11秒前
大模型应助萌萌雨采纳,获得10
11秒前
11秒前
timemaster666应助hu采纳,获得10
12秒前
科研小白完成签到,获得积分10
12秒前
熙欢完成签到,获得积分10
12秒前
Hey发布了新的文献求助10
12秒前
重回地球完成签到,获得积分10
13秒前
13秒前
fanrongfeng发布了新的文献求助10
13秒前
脑洞疼应助QAQAQAQ采纳,获得10
13秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147582
求助须知:如何正确求助?哪些是违规求助? 2798713
关于积分的说明 7830993
捐赠科研通 2455488
什么是DOI,文献DOI怎么找? 1306841
科研通“疑难数据库(出版商)”最低求助积分说明 627934
版权声明 601587