已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting the seismic ground-motion parameters: 3D physics-based numerical simulations combined with artificial neural networks

地震动 人工神经网络 基岩 衰减 地震学 加速度 峰值地面加速度 强地震动 地质学 计算机科学 物理 人工智能 经典力学 地貌学 光学
作者
Zhenning Ba,Linghui Lyu,Jingxuan Zhao,Yushan Zhang,Yu Wang
出处
期刊:Earthquake Spectra [SAGE]
被引量:2
标识
DOI:10.1177/87552930241255953
摘要

Typically, it is challenging to incorporate near-surface soils into 3D physics-based numerical simulations (PBSs) for ground-motion prediction. The low shear wave speed of near-surface soils, coupled with the complexity of the soil seismic response, poses significant difficulties. To overcome these limitations, a hybrid approach was proposed in this study, combining PBSs with artificial neural networks (ANNs). The essence of the hybrid method can be summarized as follows: (1) development of ANN models, establishing a strong-motion database, training the ANNs on it to predict the ground-motion parameters for East–West (EW), North–South (NS), and Vertical (UD) directions afterward; (2) establishment of 3D PBS model, obtaining the ground-motion parameters of the bedrock face corresponding to a certain shear wave speed; (3) application of the trained ANNs to predict the ground-motion parameters on the ground surface, taking the simulated results and related site parameters as inputs, and the outputs are peak ground acceleration (PGA) and 5% damped spectral accelerations (Sa) at different periods on the ground surface. In this study, ANN models were trained on a strong-motion database based on Kiban–Kyoshin Network (KiK-net). After several verifications of the ANN predictions, a case study of the 21 October 2016 M w 6.2 Central Tottori earthquake was conducted. In addition to the comparison with observations, the broadband (0.1–10 Hz) results of the hybrid method were also compared with the results that obtained by transfer function based on recorded data and Next Generation Attenuation (NGA)-West2 ground-motion prediction equations (GMPEs) to demonstrate the effectiveness and applicability of the proposed method. In addition, the distribution of Sa for four periods in simulated area was presented. The performance of the hybrid method for predicting broadband ground-motion characteristics was generally satisfactory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
7秒前
lkxpsy完成签到 ,获得积分10
7秒前
meow完成签到 ,获得积分10
9秒前
9秒前
cherry bomb完成签到,获得积分10
9秒前
嘿嘿应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
9秒前
今后应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
VDC应助科研通管家采纳,获得30
10秒前
852应助科研通管家采纳,获得10
10秒前
VDC应助科研通管家采纳,获得30
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
嘿嘿应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
12秒前
昏睡的幻露完成签到 ,获得积分10
13秒前
13秒前
kk关注了科研通微信公众号
13秒前
judy发布了新的文献求助10
14秒前
佳期发布了新的文献求助10
14秒前
15秒前
坚强的初夏完成签到,获得积分10
15秒前
领导范儿应助刘66666采纳,获得10
15秒前
shy发布了新的文献求助10
16秒前
16秒前
17秒前
谷雨应助不安青牛采纳,获得10
17秒前
17秒前
ven发布了新的文献求助10
19秒前
寰2023发布了新的文献求助10
19秒前
20秒前
624完成签到,获得积分10
21秒前
希望天下0贩的0应助小白采纳,获得10
22秒前
科研通AI6应助HT采纳,获得10
23秒前
寰2023完成签到,获得积分10
24秒前
木糖醇发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590129
求助须知:如何正确求助?哪些是违规求助? 4674579
关于积分的说明 14794548
捐赠科研通 4630299
什么是DOI,文献DOI怎么找? 2532556
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571