A Multi-Objective Genetic Algorithm Based on Two-Stage Reinforcement Learning for Green Shop Scheduling Problem Considering Machine Speed

强化学习 计算机科学 调度(生产过程) 遗传算法 作业车间调度 数学优化 人工智能 算法 机器学习 数学 操作系统 地铁列车时刻表
作者
Mengzhen Zhuang,Hongtao Tang,Wei Zhang,Xinyu Li,Kaipu Wang
标识
DOI:10.2139/ssrn.4838954
摘要

The consumption of energy and resources in the manufacturing industry has garnered significant attention due to the increasingly severe environmental issues. Green shop scheduling research is focused on optimizing economic and environmental indicators within the current manufacturing model. This paper specifically addresses the flexibility of job-shop scheduling problem by considering machine speed, as different machine speeds during the production process can impact energy and resource consumption. The objectives of this study include minimizing the maximum makespan, total energy consumption, and tool wear. To tackle this problem, a multi-objective genetic algorithm that incorporates a two-stage reinforcement learning approach is proposed. In light of the characteristics of the problem, a three-layer encoding approach is suggested, which encompasses machine allocation, operation sequencing, and machine speed selection. Additionally, a decoding method that integrates energy-saving strategies is proposed to enhance the optimization process. To improve the quality of the population, three distinct initialization methods have been developed. Furthermore, a parameter adjustment strategy informed by two-stage reinforcement learning is introduced. This strategy incorporates a state set and action set tailored to the unique characteristics of two-stage reinforcement learning, alongside corresponding reward mechanisms. In 30 test cases, the proposed algorithm demonstrates superior uniformity and convergence compared to five classical algorithms. In a practical machining workshop case study conducted at a hydraulic component company, the proposed algorithm generates 26 scheduling schemes with different focuses, achieving a 14.39% reduction in makespan, a 2.13% decrease in energy consumption, and a 10.65% reduction in tool wear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助郭豪琪采纳,获得10
1秒前
13679165979发布了新的文献求助10
3秒前
13679165979发布了新的文献求助10
3秒前
13679165979发布了新的文献求助10
3秒前
13679165979发布了新的文献求助10
3秒前
13679165979发布了新的文献求助10
3秒前
3秒前
Su发布了新的文献求助10
3秒前
3秒前
淡定的思松应助呆萌士晋采纳,获得10
3秒前
4秒前
5秒前
dilli完成签到 ,获得积分10
5秒前
cwy发布了新的文献求助10
7秒前
wz发布了新的文献求助10
7秒前
balzacsun发布了新的文献求助10
9秒前
JamesPei应助星星采纳,获得10
9秒前
10秒前
10秒前
laodie完成签到,获得积分10
11秒前
彭于晏应助ipeakkka采纳,获得10
11秒前
11秒前
敏感的芷发布了新的文献求助10
11秒前
susan发布了新的文献求助10
11秒前
12秒前
李爱国应助轻松的贞采纳,获得10
12秒前
wz完成签到,获得积分10
13秒前
子川完成签到 ,获得积分10
13秒前
怕孤独的鹭洋完成签到,获得积分10
13秒前
14秒前
耍酷的夏云完成签到,获得积分10
14秒前
laodie发布了新的文献求助10
15秒前
15秒前
小达完成签到,获得积分10
15秒前
nenoaowu发布了新的文献求助10
15秒前
文章要有性价比完成签到,获得积分10
16秒前
俏皮半烟完成签到,获得积分10
16秒前
Aki发布了新的文献求助10
16秒前
111完成签到,获得积分10
18秒前
耗尽完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824