A Multi-Objective Genetic Algorithm Based on Two-Stage Reinforcement Learning for Green Shop Scheduling Problem Considering Machine Speed

强化学习 计算机科学 调度(生产过程) 遗传算法 作业车间调度 数学优化 人工智能 算法 机器学习 数学 操作系统 地铁列车时刻表
作者
Mengzhen Zhuang,Hongtao Tang,Wei Zhang,Xinyu Li,Kaipu Wang
标识
DOI:10.2139/ssrn.4838954
摘要

The consumption of energy and resources in the manufacturing industry has garnered significant attention due to the increasingly severe environmental issues. Green shop scheduling research is focused on optimizing economic and environmental indicators within the current manufacturing model. This paper specifically addresses the flexibility of job-shop scheduling problem by considering machine speed, as different machine speeds during the production process can impact energy and resource consumption. The objectives of this study include minimizing the maximum makespan, total energy consumption, and tool wear. To tackle this problem, a multi-objective genetic algorithm that incorporates a two-stage reinforcement learning approach is proposed. In light of the characteristics of the problem, a three-layer encoding approach is suggested, which encompasses machine allocation, operation sequencing, and machine speed selection. Additionally, a decoding method that integrates energy-saving strategies is proposed to enhance the optimization process. To improve the quality of the population, three distinct initialization methods have been developed. Furthermore, a parameter adjustment strategy informed by two-stage reinforcement learning is introduced. This strategy incorporates a state set and action set tailored to the unique characteristics of two-stage reinforcement learning, alongside corresponding reward mechanisms. In 30 test cases, the proposed algorithm demonstrates superior uniformity and convergence compared to five classical algorithms. In a practical machining workshop case study conducted at a hydraulic component company, the proposed algorithm generates 26 scheduling schemes with different focuses, achieving a 14.39% reduction in makespan, a 2.13% decrease in energy consumption, and a 10.65% reduction in tool wear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
mmyhn应助调皮千兰采纳,获得10
5秒前
6秒前
快乐藏花完成签到,获得积分10
8秒前
细腻怜容完成签到,获得积分10
8秒前
9秒前
纪问安发布了新的文献求助20
9秒前
9秒前
9秒前
ploto完成签到,获得积分10
10秒前
平常的若雁完成签到,获得积分10
10秒前
HHHHH发布了新的文献求助10
11秒前
不配.应助亚尔采纳,获得20
11秒前
科目三应助知性的初露采纳,获得10
11秒前
ncjdoi完成签到,获得积分10
11秒前
maaicui发布了新的文献求助10
12秒前
李健应助akjsi采纳,获得10
13秒前
Foremelon发布了新的文献求助10
13秒前
sssss发布了新的文献求助10
14秒前
15秒前
小值钱完成签到,获得积分10
16秒前
HHHHH完成签到,获得积分20
16秒前
Owen应助Druid采纳,获得10
17秒前
靓丽雨梅完成签到,获得积分10
18秒前
Cala洛~完成签到 ,获得积分10
21秒前
yolanda发布了新的文献求助10
22秒前
远山有灯完成签到,获得积分10
23秒前
keke完成签到,获得积分10
23秒前
23秒前
Singularity应助调皮千兰采纳,获得10
24秒前
倩倩发布了新的文献求助20
25秒前
汉堡包应助cy程采纳,获得10
27秒前
Aprilni完成签到,获得积分10
29秒前
29秒前
酷波er应助PG采纳,获得10
30秒前
nnnnn完成签到,获得积分10
30秒前
30秒前
苏柏亚完成签到,获得积分10
30秒前
杨杨完成签到 ,获得积分10
30秒前
科研通AI2S应助zzd12318采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148165
求助须知:如何正确求助?哪些是违规求助? 2799249
关于积分的说明 7834127
捐赠科研通 2456451
什么是DOI,文献DOI怎么找? 1307282
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655